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Abstract

Marine aquaculture is playing an increasingly important role in the global food supply
chain. Data from the Food and Agriculture Organization of the United Nations (FAO,
2020b) indicates that harvested fish account for at least 20% of the animal protein intake
of 3.3 billion people, and global marine aquatic products are expected to grow by 155%
from 2020 to 2050 according to the Marine Aquatic Forecast Report of DNV (2021). As
the scale of mariculture grows in nearshore areas, severe environmental pollution and
resource utilisation conflicts with competing users such as shipping, tourism, fishing and
conservation are inevitable. Therefore, some companies or organisations, for example,
Blue Economy Cooperative Research Centre in Australia, are considering moving the fish
farms to offshore areas. Because of the lack of theoretical research and empirical practise,
such as the determination of environmental loads and the mechanism of hydroelastic
interactions between waves and flexible net structures, offshore fish farming still faces
tremendous risks and challenges. This also means that cutting-edge science and technology
in this field are gaining research traction from both academia and industry. At offshore
sites, aquatic facilities exposed to high-energy environments will be subjected to more
significant wave loads. Therefore, it is one of the core design considerations for engineers
to effectively and accurately predict the hydroelastic behaviour of fish cages under the
action of ocean waves.

Based on this background, the present Ph.D. thesis will investigate the hydroelastic
interaction between ocean waves and open-net fish cages. The specific objectives include:
1. Undertaking a systematic literature review to identify research trends and gaps in this
field; 2. Establishing an innovative semi-analytical solution for the research question; 3.
Simulating and analysing the hydroelastic behaviour of the net cage under wave action;
4. Conducting parametric studies on the mechanical characteristics of the cages. These
tasks provide references and experience for engineers when designing offshore aquaculture
systems. To achieve these objectives, the Ph.D. research is divided into three phases.

In Study I, a preliminary closed-loop solution for the interaction between waves and
net cages is proposed. The wave field is described by the potential flow theory, and
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the motion of the net cage is governed by the string vibration equation. Based on the
eigenfunction expansion in the frequency domain, the general solution of this physical
problem is written as a Fourier-Bessel series, and the corresponding particular solution can
be obtained by boundary value conditions and a least squared approximation. Convergence
and comparative studies are to validate the reliability of the models. The simulation results
indicate that a significant wave-induced response appeared on the top of the cage, especially
for short waves, so a submersible fish cage is recommended to avoid strong surface waves.
The porous effect of the fish cage net can generate disturbances to the wave surface. Also,
the ratio of incident wavelength to cage diameter is an important parameter affecting the
wave force and overturning moment acting on the cage.

To overcome the oversimplification in modelling the structural component in Study
I, the flexible net is equivalent to a perforated thin cylindrical shell that cannot provide
bending stiffness, and the shell-membrane theory from Flügge (1973) is applied to describe
the motion behaviour and constitutive relationship of the net cage. The corresponding
method of solutions is proposed in Study II, where a more realistic dynamic behaviour of
the cage is illustrated compared to the conventional model. Due to the porous effect of the
net, the wave amplitude around the cage is distributed in a “wake” shape, which causes
the dissipation of wave energy inside the cage and behind its leeward side. Increasing the
porosity and flexibility of the net facilitates suppressing the scattering effect of the wave.
Notably, when the ratio of cage diameter to incident wavelength is around 0.59 and 1.70,
the wave force and overturning moment acting on the cage are zero.

A theoretical extension to wave interference among multiple cages is exhibited in
Study III. According to the Kagemoto and Yue (1986) interaction theory, the interference
phenomenon of the wave field can be regarded as the superposition of scattered waves
produced by each individual cage, and Graf’s addition theorem can express the coordinate
transformation of the velocity potential. In addition, the mean wave drift force acting on
the fish cage can be deduced by the time-averaged operation of the nonlinear term in the
Bernoulli equation. In this study, an array of cages laid in two rows by three columns is
discussed. The results indicate that by increasing the wavenumber, spacing of the cages
and porosity of the net, the amplitude variation of the free water surface elevation caused
by the interference effect can be suppressed. In the direction of the incident wave, the
rear cages are imposed with opposite mean wave loads compared to the front cages. The
parametric study still shows that the wave force on the cage is zero when the ratio of cage
diameter to incident wavelength is 0.59, but the maximum magnitude of the wave force
occurs in the low-frequency range of incident waves.
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These studies provide scientific and technical contributions to the engineering applica-
tion of offshore fish farming. The theoretical implication of wave-cage interaction includes
the introduction of shell-membrane theory and wave interference. In view of practical
implications, the developed semi-analytical model provides an effective tool for engineers
to predict the wave response of fish cages, and the research conclusions provide refer-
ence and experience in engineering design. In future work, more complex hydrodynamic
phenomena and marine aquaculture systems are expected to be explored.

xv





Table of Contents

List of Figures xxi

List of Tables xxix

Nomenclatures xxxi

1 Introduction 1

1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Hydrodynamic actions and analysis in marine aquaculture . . . . . . . . 10

2.2.1 Hydrodynamic responses . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Empirical equations of hydrodynamic loads . . . . . . . . . . . . 19

2.2.3 Potential flow models . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Computational fluid dynamic models . . . . . . . . . . . . . . . 33

2.3 Structural reliability and modelling of a fish cage system . . . . . . . . . 37

2.3.1 Structural reliability . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Modelling of fish cages . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Summary and research gaps . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Summary of the literature review . . . . . . . . . . . . . . . . . . 43

xvii



Table of Contents

2.4.2 Existing research gaps . . . . . . . . . . . . . . . . . . . . . . . 44

3 Research Question and Methodologies 45

3.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Study I: A theoretical framework for the hydroelastic interaction
between waves and submersible flexible fish cages . . . . . . . . 46

3.2.2 Study II: Innovative analytical schemes by practising the shell-
membrane theory in modelling net chambers . . . . . . . . . . . 49

3.2.3 Study III: Theoretical extensions to the wave interference effects
in the multi-cage system . . . . . . . . . . . . . . . . . . . . . . 50

4 Closed-Form Solutions to Interactions between Waves and Net Cages 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Problem definition, assumption and theoretical formulation . . . . . . . . 59

4.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Derivation of the solutions . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Convergence studies and model validation . . . . . . . . . . . . . . . . . 67

4.4.1 Convergence studies . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Hydrodynamic behaviours . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Structural dynamic responses . . . . . . . . . . . . . . . . . . . 73

4.5.3 Parametric studies . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Analytical Schemes by Practicing the Shell-Membrane Theory 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Problem definition, assumption and theoretical formulation . . . . . . . . 94

xviii



Table of Contents

5.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Derivation of the solutions . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Structural domain . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Fluid-structure interaction . . . . . . . . . . . . . . . . . . . . . 103

5.4 Convergence studies and model validation . . . . . . . . . . . . . . . . . 105

5.4.1 Convergence studies . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5.1 Wave surface profiles . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.2 Structural dynamic responses . . . . . . . . . . . . . . . . . . . 113

5.5.3 Parametric studies . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Theoretical extension to wave interference effects in multi-cage systems 123

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Problem definition, assumption and theoretical formulation . . . . . . . . 128

6.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Derivation of the solutions . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.1 Fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.2 Structural domain . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.3 Fluid-structure interactions . . . . . . . . . . . . . . . . . . . . . 137

6.4 Convergence studies and model validation . . . . . . . . . . . . . . . . . 140

6.4.1 Convergence studies . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5.1 Wave interference effects . . . . . . . . . . . . . . . . . . . . . . 144

xix



Table of Contents

6.5.2 Structural dynamic responses . . . . . . . . . . . . . . . . . . . 146

6.5.3 Parametric studies . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Conclusions 161

7.1 Research restatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 General discussions and key findings . . . . . . . . . . . . . . . . . . . . 162

7.2.1 An establishment for the semi-analytical solution . . . . . . . . . 162

7.2.2 Model updating by introducing the shell-membrane theory . . . . 163

7.2.3 Wave interference effects in an array of fish cages . . . . . . . . . 164

7.3 Scientific contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3.1 Implications in theoretical developments . . . . . . . . . . . . . 165

7.3.2 Implications in engineering practice . . . . . . . . . . . . . . . . 166

7.4 Research limitations and future work . . . . . . . . . . . . . . . . . . . . 166

7.4.1 Research limitations . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4.2 Future work lines . . . . . . . . . . . . . . . . . . . . . . . . . . 167

References 171

xx



List of Figures

1.1 Global statistics and predictions: (a) Marine aquaculture production; (b)
Installed finfish production capacity (DNV, 2021). . . . . . . . . . . . . . 2

1.2 The schematic diagram of a basic fish cage system (Zhao et al., 2019b). . 5

2.1 Configuration of a typical net structure. . . . . . . . . . . . . . . . . . . 12

2.2 Range of application of different wave theories (Méhauté, 1976). . . . . . 16

2.3 Sketch of the method when utilising the Morison-type equation: F1 is the
drag force when the net twine is inclined with respect to the incoming flow
velocity vector, and F2 is the drag force when the net twine is orthogonal
with the incoming flow velocity vector. . . . . . . . . . . . . . . . . . . . 20

2.4 Sketch of the screen-type method. . . . . . . . . . . . . . . . . . . . . . 23

2.5 Deformed net chambers with different current velocities and sinker weights
(Lader and Enerhaug, 2005). . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Mooring system types: spread moorings: (a) Taut; (b) Taut spread; (c)
Catenary; (d) Multi-catenary; and single point moorings: (e) SALM; (f)
CALM; (g) Lazy-S (Davidson and Ringwood, 2017). . . . . . . . . . . . 40

3.1 Methodological framework for the existing research. . . . . . . . . . . . 47

3.2 Theoretical framework of the simulation model in Study I. . . . . . . . . 48

3.3 Theoretical framework of the simulation model in Study II. . . . . . . . . 50

3.4 Theoretical framework of the simulation model in Study III. . . . . . . . 51

3.5 Numerical execution flow chart for the eventual simulation model to anal-
yse the wave-net cage interaction. . . . . . . . . . . . . . . . . . . . . . 53

xxi



List of Figures

4.1 A sketch of a cylindrical net cage submerged in a finite water depth: (a)
Plan view; (b) Isometric view. . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The fish cage net is modelled as a porous membrane. . . . . . . . . . . . 61

4.3 Convergence curves of control errors versus truncated terms for different
wave frequencies: (a) ∆Er(N) versus N; (b) ∆Er(M) versus M. . . . . . . 68

4.4 Model validations: (a) Horizontal wave force |F|; (b) Cage deflection
amplitude |η|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Free water surface elevations ξ around a cylindrical net cage with different
opening ratios at t/T = n, n = 0, 1, 2, ..., ∞, Cases B1 to B4: (a) τ0 = 0;
(b) τ0 = 0.1; (c) τ0 = 0.2; (d) τ0 = 0.3. . . . . . . . . . . . . . . . . . . . 72

4.6 Amplitude distributions of pressure drop ∆pa on the net interface, Cases
A1 to A4: (a) T = 4 s; (b) T = 6 s; (c) T = 8 s; (d) T = 10 s. . . . . . . . 73

4.7 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b)
Nondimensional horizontal wave load amplitudes per unit length K f along
cage height for various wave periods T , Cases A1 to A4. . . . . . . . . . 75

4.8 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b)
Nondimensional horizontal wave load amplitudes per unit length K f along
cage height for various net opening ratios τ0, Cases B5 to B8. . . . . . . . 75

4.9 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b)
Nondimensional horizontal wave load amplitudes per unit length K f along
cage height for various dimensionless mooring spring constants α, Cases
C1 to C4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b)
Nondimensional horizontal wave load amplitudes per unit length K f along
cage height for various dimensionless axial tensile forces γ in the net,
Cases D1 to D4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.11 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b)
Nondimensional horizontal wave load amplitudes per unit length K f along
cage height for various relative diving depths d1/h of the cage, Cases E1
to E4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 3D shapes of a net cage at different submerged depths with the maximum
deformation in an exaggerated scale of 5 times: (a) d1/h = 0; (b) d1/h =

0.05; (c) d1/h = 0.15; (d) d1/h = 0.25. . . . . . . . . . . . . . . . . . . . 78

xxii



List of Figures

4.13 Effect of wave-effect parameter Cw on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of
horizontal overturning moment KM for various net opening ratios τ0, H =

7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and β = 0.001. 80

4.14 Effect of wave steepness H/L on (a) Nondimensional amplitude of horizon-
tal hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal
overturning moment KM for various net opening ratios τ0, T = 8 s, h =

200 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and β = 0.001. . . . . . 80

4.15 Effect of relative water depth h/L on (a) Nondimensional amplitude of
horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of
horizontal overturning moment KM for various net opening ratios τ0, T =

8 s, H = 7 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and β = 0.001. . 81

4.16 Effect of relative cage diameter 2a/L on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of
horizontal overturning moment KM for various net opening ratios τ0, T =

8 s, H = 7 m, h = 200 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and β = 0.001. 82

4.17 Effect of relative cage diving depth d1/h on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of
horizontal overturning moment KM for various net opening ratios τ0, T =

8 s, H = 7 m, h = 200 m, a = 50 m, d2 = 50 m, α = 20, γ = 1 and β = 0.001. 82

4.18 Effect of relative cage height d2/h on (a) Nondimensional amplitude of
horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of
horizontal overturning moment KM for various net opening ratios τ0, T

= 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, α = 20, Q/(msga) = 1 and
ms/(ρa2) = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.19 Effect of nondimensional mooring spring constant α on (a) Nondimen-
sional amplitude of horizontal hydrodynamic force KF ; (b) Nondimen-
sional amplitude of horizontal overturning moment KM for various net
opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50
m, γ = 1 and β = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.20 Effect of nondimensional axial tensile force γ in the net on (a) Nondimen-
sional amplitude of horizontal hydrodynamic force KF ; (b) Nondimen-
sional amplitude of horizontal overturning moment KM for various net
opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50
m, α = 20 and β = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xxiii



List of Figures

4.21 Effect of nondimensional net mass per unit length β on (a) Nondimensional
amplitude of horizontal hydrodynamic force KF ; (b) Nondimensional
amplitude of horizontal overturning moment KM for various net opening
ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m,
α = 20 and γ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.22 Effect of net opening ratio τ0 on (a) Nondimensional amplitude of horizon-
tal hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal
overturning moment KM for various nondimensional axial tensile forces
γ in the net, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m,
α = 20 and β = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.23 Effect of fluid inertia effect parameter τi on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude
of horizontal overturning moment KM for various nondimensional axial
tensile forces γ in the net, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0,
d2 = 50 m, τ0 = 0.7, α = 20 and β = 0.001. . . . . . . . . . . . . . . . . . 86

5.1 Submerged cylindrical fish net cage in a constant water depth and under
wave action: (a) Plan view; (b) Isometric view. . . . . . . . . . . . . . . . 95

5.2 Sketch of a cylindrical shell: (a) Displacement components; (b) Membrane
stress resultants in a shell element. . . . . . . . . . . . . . . . . . . . . . 96

5.3 The fish cage net is modelled as a porous membrane. . . . . . . . . . . . 98

5.4 Convergence analysis for truncated terms of N and M: (a) Variations of
∆Er(N) versus N; (b) Variations of ∆Er(M) versus M. . . . . . . . . . . . 106

5.5 Model validations: (a) Normalised free water surface elevation variations
ξ/H; (b) Normalised horizontal wave force |F|/[ρg(H/2)a2]. . . . . . . . 107

5.6 Variations of free water surface elevations ξ around a cylindrical net cage
over time: (a) t/T = 0; (b) t/T = 1/4; (c) t/T = 1/2; (d) t/T = 3/4, Case A3.109

5.7 Variations of normalized free water surface elevations ξ/H with time series
for different positions in zones 1 and 2, Case A3. . . . . . . . . . . . . . 110

5.8 Amplitudes of free surface elevations ξa around a cylindrical net cage
with various wave-effect parameters Cw: (a) Cw = 0.04; (b) Cw = 0.06; (c)
Cw = 0.08; (d) Cw = 0.12, Cases A1–A4. . . . . . . . . . . . . . . . . . . 110

xxiv



List of Figures

5.9 Amplitudes of free surface elevations ξa around a cylindrical net cage
with various porous effect parameters τ: (a) τ = 1+1i; (b) τ = 2+2i; (c)
τ = 3+3i; (d) τ = 4+4i, Cases B1–B4. . . . . . . . . . . . . . . . . . . . 111

5.10 Amplitudes of free surface elevations ξa around a cylindrical net cage with
various nondimensional elastic modulus η: (a) η = 0.5×103; (b) η = 1×103;
(c) η = 2×103; (d) η = 4×103, Cases C1–C4. . . . . . . . . . . . . . . . . 112

5.11 Free surfaces and dynamic responses of a cylindrical net cage over time:
(a) t/T = 0; (b) t/T = 1/4; (c) t/T = 1/2; (d) t/T = 3/4, Case A3. . . . . . 113

5.12 Spatial contours of (a) Axial displacement amplitude Ua; (b) Circumferen-
tial displacement amplitude Va; (c) Radial displacement amplitude Wa; (d)
Pressure drop amplitude ∆pa, Case A3. . . . . . . . . . . . . . . . . . . 114

5.13 Pressure drops ∆p on a cylindrical net cage and corresponding deforma-
tions with various wave-effect parameters Cw at t = T/2: (a) Cw = 0.04;
(b) Cw = 0.06; (c) Cw = 0.08; (d) Cw = 0.12, Cases A1–A4. . . . . . . . . 115

5.14 Pressure drops ∆p on a cylindrical net cage and corresponding deforma-
tions with various porous effect parameters τ at t = T/2: (a) τ = 1+1i; (b)
τ = 2+2i; (c) τ = 3+3i; (d) τ = 4+4i, Cases B1–B4. . . . . . . . . . . . 115

5.15 Pressure drops ∆p on a cylindrical net cage and corresponding defor-
mations with various nondimensional elastic modulus η at t = T/2: (a)
η = 0.5×103; (b) η = 1×103; (c) η = 2×103; (d) η = 4×103, Cases C1–C4. 116

5.16 Pressure drops ∆p on a cylindrical net cage and corresponding deforma-
tions with various relative diving depths d1/h at t = T/2: (a) d1/h = 0; (b)
d1/h = 0.05; (c) d1/h = 0.10; (d) d1/h = 0.15, Cases D1–D4. . . . . . . . 117

5.17 Influences of wave effect parameters Cw on nondimensional amplitudes
of (a) Horizontal wave forces KF ; (b) Overturning moments KM under
various porous effect parameters τ, ts/a = 10−4, d1/h = 0, d2/(2a) = 0.5
and η = 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.18 Influences of relative diameters 2a/L of the cage on nondimensional ampli-
tudes of (a) Horizontal wave forces KF ; (b) Overturning moments KM un-
der various porous effect parameters τ, Cw = 0.08, d1/h = 0, d2/(2a) = 0.5
and η = 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xxv



List of Figures

5.19 Influences of relative diving depths d1/h of the cage on nondimensional
amplitudes of (a) Horizontal wave forces KF ; (b) Overturning moments
KM under various porous effect parameters τ, Cw = 0.08, ts/a = 10−4,
d2/(2a) = 0.5 and η = 103. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.20 Influences of slenderness ratios d2/(2a) of the cage on nondimensional
amplitudes of (a) Horizontal wave forces KF ; (b) Overturning moments
KM under various porous effect parameters τ, Cw = 0.08, ts/a = 10−4,
d1/h = 0 and η = 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.21 Influences of nondimensional elastic modulus η of the cage on nondi-
mensional amplitudes of (a) Horizontal wave forces KF ; (b) Overturn-
ing moments KM under various porous effect parameters τ, Cw = 0.08,
ts/a = 10−4, d1/h = 0 and d2/(2a) = 0.5. . . . . . . . . . . . . . . . . . . 120

5.22 Influences of porous resistance parameters τr of the cage on nondimen-
sional amplitudes of (a) Horizontal wave forces KF ; (b) Overturning mo-
ments KM under various fluid inertia parameters τi, Cw = 0.08, ts/a = 10−4,
d1/h = 0, d2/(2a) = 0.5 and η = 103. . . . . . . . . . . . . . . . . . . . . 121

5.23 Influences of fluid inertia parameters τi of the cage on nondimensional
amplitudes of (a) Horizontal wave forces KF ; (b) Overturning moments
KM under various porous resistance parameters τr, Cw = 0.08, ts/a = 10−4,
d1/h = 0, d2/(2a) = 0.5 and η = 103. . . . . . . . . . . . . . . . . . . . . 121

6.1 Sketches and parameter definitions of multiple cylindrical net cages: (a)
Plan view; (b) Isometric view. . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 A sketch and parameter definitions of a cylindrical shell. . . . . . . . . . 130

6.3 Layout of an array of cylindrical net cages with two rows by three columns.141

6.4 Convergence studies for the truncated terms N and M: (a)
∑NC

j=1 KFx
j

versus N; (b)
∑NC

j=1 KFx

j
versus M, N = 40. The other constant parameters

are H = 7 m, β = π/4, h = 200 m, a j = 50 m, ts
j/a j = 10−4, d1

j/h =

0.05, d2
j/h = 0.25, τ j = 1+1i, ν j = 0.3, ρs

j/ρ = 1.2, E j/(ρs
jgh) = 103 and

sx/h = sy/h = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Comparison of the free water surface elevation amplitude ξa around four
porous cylinders. The other constant parameters are H = 1, β = π/4, a j =

0.2, κ0a j = π/2, h/a j = 5, d1
j/h = 0, d2

j/h = 1, τ j = 1, ν j = 0.3, ρs
j/ρ =

1.2, E j/(ρs
jgh) = 109 and sx/h = sy/h = 0.4. . . . . . . . . . . . . . . . . 143

xxvi



List of Figures

6.6 Comparison of the total wave force on four floating porous cages. The other
constant parameters are H = 1, a j = 8.44 m, h = 200 m, d1

j/h = 0, d2
j/h

= 0.175, ν j = 0.3, ρs
j/ρ = 1.2, E j/(ρs

jgh) = 109 and sx/h = sy/h = 0.347. 143

6.7 Comparison of the normalised wave forces KFx
j on an array of flexible

porous cages and a single flexible porous cage. The other constant param-
eters are H = 7 m, β = 0, h = 200 m, a j = 50 m, ts

j/a j = 10−4, d1
j/h = 0,

d2
j/h = 0.25, ν j = 0.3, ρs

j/ρ = 1.2, E j/(ρs
jgh) = 103 and sx/h = sy/h = 105.144

6.8 Contour plots of the free water surface elevation amplitude ξa around a
2× 3 array of net cages under different incident wave angles, (a) to (d):
Cases A1 to A4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.9 Contour plots of the free water surface elevation amplitude ξa around a
2×3 array of net cages under different incident wavelengths, (a) to (d):
Cases B1 to B4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.10 Contour plots of the free water surface elevation amplitude ξa around a
2×3 array of net cages under different cage spacings, (a) to (d): Cases C1
to C4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.11 Contour plots of the free water surface elevation amplitude ξa around a
2×3 array of net cages under different net porous effect parameters, (a) to
(d): Cases D1 to D4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.12 First-order pressure drop ∆p j on a 2×3 array of net cages with an exag-
gerated deformation of twice the scale and the nearby free water surface
(purple shaded), Case B2. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.13 Spatial contour plots of the amplitude of first-order pressure drop ∆p j
a on

the interface of each cage, Case B2. . . . . . . . . . . . . . . . . . . . . 150

6.14 Spatial contour plots of the amplitude of time-averaged pressure drop ∆pa
j

on the interface of each cage, Case B2. . . . . . . . . . . . . . . . . . . . 150

6.15 Spatial contour plots of the amplitude of axial displacement Ua
j of each

cage, Case B2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.16 Spatial contour plots of the amplitude of circumferential displacement Va
j

of each cage, Case B2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.17 Spatial contour plots of the amplitude of axial displacement Wa
j of each

cage, Case B2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xxvii



List of Figures

6.18 Normalised first-order wave forces: (a) Component KFx
j; (b) Component

KFy
j and normalised mean wave drift forces: (c) Component KFx

j
; (d)

Component KFy

j
on each cage versus varied nondimensional incident wave

angles β/(2π). The other constant parameters are κ0h = 12, ts
j/a j = 10−4,

τ j = 1+1i and sx/h = sy/h = 0.1. . . . . . . . . . . . . . . . . . . . . . . 153

6.19 Normalised first-order wave forces: (a) Component KFx
j; (b) Component

KFy
j and normalised mean wave drift forces: (c) Component KFx

j
; (d)

Component KFy

j
on each cage versus varied nondimensional incident

wavelengths κ0h, β = π/4, ts
j/a j = 10−4, τ j = 1+1i and sx/h = sy/h = 0.1. 153

6.20 Normalised first-order wave forces: (a) Component KFx
j; (b) Component

KFy
j and normalised mean wave drift forces: (c) Component KFx

j
; (d)

Component KFy

j
on each cage versus varied relative diameters of the cages

2a j/L, β = π/4, κ0h = 12, τ j = 1+1i and sx/h = sy/h = 0.1. . . . . . . . . 154

6.21 Normalised first-order wave forces: (a) Component KFx
j; (b) Compo-

nent KFy
j and normalised mean wave drift forces: (c) Component KFx

j
;

(d) Component KFy

j
on each cage versus varied porous resistance effect

parameters of the net τr j, β = π/4, κ0h = 12, ts
j/a j = 10−4, τi j = 1 and

sx/h = sy/h = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.22 Normalised first-order wave forces: (a) Component KFx
j; (b) Component

KFy
j and normalised mean wave drift forces: (c) Component KFx

j
; (d)

Component KFy

j
on each cage versus varied fluid inertial effect parameters

of the net τi j, β = π/4, κ0h = 12, ts
j/a j = 10−4, τr j = 1 and sx/h = sy/h = 0.1.156

6.23 Contour plots of the normalised first-order wave force component KFx
j

on each cage as a function versus relative cage spacings sx/L and sy/L,
β = π/4, κ0h = 12, ts

j/a j = 10−4 and τ j = 1+1i. . . . . . . . . . . . . . . 156

6.24 Contour plots of the normalised first-order wave force component KFy
j

on each cage as a function versus relative cage spacings sx/L and sy/L,
β = π/4, κ0h = 12, ts

j/a j = 10−4 and τ j = 1+1i. . . . . . . . . . . . . . . 157

6.25 Contour plots of the normalised mean wave drift force component KFx

j

on each cage as a function versus relative cage spacings sx/L and sy/L,
β = π/4, κ0h = 12, ts

j/a j = 10−4 and τ j = 1+1i. . . . . . . . . . . . . . . 157

6.26 Contour plots of the normalised mean wave drift force component KFy

j

on each cage as a function versus relative cage spacings sx/L and sy/L,
β = π/4, κ0h = 12, ts

j/a j = 10−4 and τ j = 1+1i. . . . . . . . . . . . . . . 158

xxviii



List of Tables

1.1 Classifications of coastal, off-coast and offshore farming (Chu et al., 2020). 4

2.1 Degree of exposure for waves and currents (NS9415, 2009). . . . . . . . 10

2.2 The Douglas sea scale for wind-sea states and swells (Morrisey et al., 2015). 15

4.1 Case groups with different studied parameters (Study I). . . . . . . . . . . 71

5.1 Case groups with different studied parameters (Study II). . . . . . . . . . 108

6.1 Case groups with different studied parameters (Study III). . . . . . . . . . 145

xxix





Nomenclatures

As Area of the screen in the screen-type method

Cw Wave effect parameters

E Young’s modulus

ET I Wave transmission index

F First-order wave force magnitude

Fx First-order wave force component in x direction

Fy First-order wave force component in y direction

G Shear modulus

H Incident wave height

Hm Hankel functions of the first kind in mth order

Hs Significant wave height

Im Modified Bessel functions of the first kind in mth order

Jm Bessel functions of the first kind in mth order

K Discharge coefficient

KC Keulegan–Carpenter number

Km Modified Bessel functions of the second kind in mth order

L Incident wave length

Mo First-order wave overturning moment magnitude

Nz Axial membrane stress resultant in a micro shell element

xxxi



Nomenclatures

Nθ Circumferential membrane stress resultant in a micro shell element

Nθz, Nzθ Shear membrane stress resultant in a micro shell element

Q Axial tension force in the net

Re Reynolds’s number

S Boundary of the fluid domain in the boundary element method

S i Source term in the RANS and VARANS equations

S n Net solidity ratio

S gap Gap region

S net Net region

T Incident wave period

Tp Peak energy wave period

U Axial displacement of the cage

Ua Axial displacement of the cage amplitude

V Circumferential displacement of the cage

Vtwine Volume of the net twine

Va Circumferential displacement of the cage amplitude

W Radial displacement of the cage

Wa Radial displacement of the cage amplitude

∆Er Control error in convergence studies on the truncated terms

∆pa Pressure drop amplitude

∆p Pressure drop

Φ Fluid velocity potential

ΦD Diffracted wave velocity potential

ΦI Incident wave velocity potential

xxxii



Nomenclatures

ΦR Rational wave velocity potential

ΦS Scattered wave velocity potential

α Attack angle of flow

β Incident wave angle

FFFD Fluid drag force in the screen-type method

FFFL Fluid lift force in the screen-type method

FFFN Normal force component in the screen-type method

FFFT Tangential force component in the screen-type method

FFFd Fluid drag force in the Morison equation

FFFi Fluid inertia force in the Morison equation

nnn Unit normal vector

uuu Flow velocity

uuun Normal flow velocity

uuur Relative flow velocity

uuu∞ Incoming flow velocity

uuuτ Tangential flow velocity

xxx Structural displacement relative to the mean position

η Transverse deflection complex amplitude of the cage (Chapter 4); Nondimensional
elastic modulus of the net (Chapter 5)

γ Phase index in the volume of fluids method (Chapter2); Nondimensional axial
tensile force in net (Chapter 4)

κ0 Incident wave number

µ Fluid dynamic viscosity

µs Material roughness

µt Eddy viscosity

xxxiii



Nomenclatures

ν Poisson’s ratio

ω Angular wave frequency

Fx Mean wave drift force component in x direction

Fy Mean wave drift force component in y direction

∆pa Amplitude of the mean wave drift pressure drop

∆p Mean wave drift pressure drop

ρ Fluid density

ρs Solid density

τ Porous effect parameter of the net

τ0 Porosity of the net

τi Fluid inertia effect parameter of the net

τr Porous resistance effect parameter of the net

ε Incident wave slope (Chapter 4)

φ Velocity potential complex amplitude

φI Complex amplitude of the incident wave velocity potential

φS Complex amplitude of the scattered wave velocity potential

φ0 Source function in the boundary element method

ξ Free water surface elevation

ξa Amplitude of the Free water surface elevation

ζ Transverse deflection (Chapter 4)

a Radius of the cage

d1 Cage height

d2 Submerged depth of the cage

dtwine Diameter of the net twine

xxxiv



Nomenclatures

f (z) Horizontal wave load per unit length on the cage

fi Linearised fluid inertia coefficient

fr Linearised porous resistance coefficient

h Water depth

ks Spring constant of the mooring cables

ltwine Length of the net twine

lcube Side length of a cube cage

ms Uniform mass of the net per unit length

p Fluid dynamic pressure

p∗ Fluid pressure

sx Spacing of the cage array in x direction

sy Spacing of the cage array in y direction

ts Shell thickness

ua Amplitude of the flow velocity

CD Drag force coefficient in the screen-type method

CL Lift force coefficient in the screen-type method

CN Normal force coefficient in the screen-type method

CT Tangential force coefficient in the screen-type method

Cd Drag coefficient in the Morison equation

Cm Added mass coefficient in the Morison equation

cm Added mass coefficient in the VARANS equation

g Gravity acceleration

xxxv





Chapter 1

Introduction

1.1 Research Background

Marine resource is an important supply chain of global prolificacy, with the aquaculture
industry being one of the major suppliers of animal proteins for human beings. According
to the report from the Food and Agriculture Organization (FAO, 2020b), harvested fish
account for at least 20% of the animal protein intake for 3.3 billion people. Over recent
years, the rapid development of fisheries has created considerable economic value due to
population growth and increased food demand. The data from DNV (2021) demonstrates
that from 1990 to 2020, the output from marine aquaculture increased 5.8 times to 29
million tons per year, and it is expected to grow to 74 million tons in 2050 as a dominant
production sector, the same is true of capture fisheries, based on the fastest-growing
tendency (Fig. 1.1a).

Nearshore fish farming has become increasingly attractive and has been the focus
of international attention since the 1990s (Langan, 2009). However, along with the
environmental deterioration and resource allocation conflicts with other ocean industries
along coasts and inner bays, it is an inevitable challenge for the aquaculture industry
to sustainably utilize marine resources and maintain the health of marine ecosystems
simultaneously, i.e., the blue economy.

At offshore sites, a deeper water column will reduce waste deposit concentrations
around the fish cage and give fish more movement space by increasing the cage height
(Chu et al., 2020). In addition, it is helpful to move the fish cage into a deeper and safer
water layer to avoid storms (Chu et al., 2020). Cardia and Lovatelli (2015) also suggested
that the water depth is preferably more than three times that of the depth of the fish
cage. Therefore, some countries such as Ireland, Scotland, the Faroe Islands, Canada,
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(a) 

(b) 

Fig. 1.1 Global statistics and predictions: (a) Marine aquaculture production; (b) Installed finfish
production capacity (DNV, 2021).
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1.1 Research Background

the Canary Islands, Australia, the Mediterranean, and Mexico, have begun offshore fish
farming operations (Fredheim and Langan, 2009). In addition, DNV (2021) predicted that
the capacity of global offshore finfish production will continue to increase and exceed that
of sheltered fish farming as Fig. 1.1b.

Holmer (2010) defined 3 classes for fish farming sites: Class 1 – coastal farming,
Class 2 off-coast farming and Class 3 - offshore farming, based on the geographical and
hydrodynamical settings as shown in Table 1.1, reviewed by Chu et al. (2020). It can
be found that the classification is mainly determined by the distance from shore, water
depth, and wave conditions. Chu et al. (2020) also defined some practised restrictions on
conditions for offshore fish cages:

i) The offshore fish cage should be located in an exclusive economic zone, which is at
least 3 km away from the coastline;

ii) The water depth of the site should be greater than 50 m or at least three times the
fish cage height, and the distance between the cage bottom and the seabed should
not be less than 15 m;

iii) The current velocity at the site is within the range of 0.1 to 1 m/s;

iv) The significant wave height of 1 year return period at the site is greater than 3 m.

Nevertheless, offshore fish farming still faces difficulties and challenges. Compared
with sheltered water, the sea conditions in deep sea are more complicated and the environ-
mental loads are more severe. Under extreme weather conditions, the destruction, collapse
or sinking of cages cause fishes to escape and die, resulting in significant economic losses,
which inevitably lead to supernumerary difficulties and costs in the design, manufacturing
and installation. Therefore, new technologies for offshore aquaculture cage systems, such
as innovative concepts of ultra-large offshore fish cages, advanced engineering analysis
models and data monitoring systems, et cetera, will gain traction and market share. For
example, Ocean Farm I is a pioneering large-scale offshore cage system. Its design, manu-
facturing and installation incorporate a large number of advanced scientific technologies
and require high levels of industrial manufacturing capabilities. As a result, extensive
theoretical knowledge and technical support are demanded for the feasibility investigation
of offshore fish farming based on the perspective of engineering research.

The marine facilities exposed offshore are bound to be affected by complex environmen-
tal factors, including wind, waves, currents, ice and other hydrological and meteorological
elements. Earthquakes may also cause submarine landslides and high-density turbidity
currents, with velocities of up to 25 m/s (Faltinsen, 2014). However, there are few require-
ments in existing standards for the determination of extreme environmental conditions.
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Table 1.1 Classifications of coastal, off-coast and offshore farming (Chu et al., 2020).

The forces generally experienced by cage chambers include gravity, hydrostatic pressure,
fluid drags, fluid inertial forces, internal forces caused by other structural components and
impact forces due to fish (the loads provided by a sudden impact due to fish movement).
The vortex-induced vibration caused by viscous flows can also cause fatigue damage to
the mooring cables. Therefore, the mechanistic study of hydrodynamics is crucial for
the design of fish cages. Furthermore, the knowledge of the flow field is important for
analysing the ecological environment inside and around the cages. This will facilitate the
modelling of oxygen concentration and effluent transport inside or through the cage by
capturing the flow field around the cage (Patursson, 2008).

An aquaculture cage system generally comprises of floating collars, net chambers,
mooring systems, and sinkers (Fig. 1.2), and some novel concepts of offshore cage type
are also proposed, such as hull-structure farms, semi/fully submersible cages, closed-
containment tanks, et cetera. Severe structural dynamic responses can result in safety risks,
and cage volume reductions also impact fish welfare under large deformations. Therefore,
the simulation and monitoring of structural behaviours are commonly employed with the
development of computational mechanics techniques. Notably, because of the motions
and deformations of the net cage under hydrodynamic actions, the flow characteristics are
significantly influenced due to fluid-structure interactions (FSI). The coupling theory of
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1.2 Aims and objectives

Fig. 1.2 The schematic diagram of a basic fish cage system (Zhao et al., 2019b).

FSI links the hydrodynamics to the structural analysis, which is essential for establishing a
completed numerical framework for the cage system.

1.2 Aims and objectives

To date, the technology of nearshore fish cages has been developed and widely applied.
However, the sheltered water areas are approaching its capacities, and many problems
caused by nearshore aquaculture, such as the environmental issues and limited feeding
capacities, indicate that offshore fish farming will become an inevitable trend for high
productivity and low pollution in the future. For the offshore fish cage system, there are
some technical challenges that need to be overcome. First, there are limited information
and references about the feasibility of fish farming sited in deep seas due to the more
complex sea conditions. Secondly, stronger waves, currents and other environmental loads
will lead to more stringent requirements on the types, materials and robustness of the
cage structure. Finally, traditional numerical methods usually require a huge amount of
computation for hydroelastic analysis, which cannot be effectively applicable in the cases
with actual scales in practising.

The aim of the present research is to develop a more efficient model for the hydroe-
lastic analysis of fish cages, which can be employed by engineers and managers for the
development of fish farms. The specified objectives include:

1. Presenting a systematic literature review to identify the major challenges associated
with the development of offshore fish farming;
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2. Developing a hydroelastic model of the open-net cages from single cages to cage
arrays based on semi-analytical solutions, which can quickly and effectively simulate
flow field information and structural dynamic responses, so it provides possible
practice for the research of real-scale cages in the large wave domain;

3. Characterising the scattered or interfered wave fields in the presence of the cage and
its corresponding wave responses;

4. Conducting parametric studies of the factors affecting the mechanical properties
in the fish cage design, including hydrodynamic conditions (wave heights, wave
periods, water depths, current velocities, etc.) and structural parameters (dimen-
sions, strengths, net porosity, etc.). By the optimisation analysis to the relevant
design parameters, it is beneficial to ensure the safety of aquatic facilities in a more
economical design.

By accomplishing the four objectives, the hydroelastic mechanism of the flexible fish
pen structure can be determined and along with some important findings assist engineers
in designing offshore aquaculture systems through the developed model.

1.3 Outline of the thesis

This Ph.D. thesis is composed of the following parts:

Chapter 1 is an introduction to the research topic and background, and the research
objectives are outlined.

Chapter 2 is an literature review, which critically reviews: i) the hydrodynamic actions
and relevant evaluation approaches in marine aquaculture; ii) the structural dynamic
performances and modelling techniques of cage systems. Finally, some significant research
gaps are summarized.

Chapter 3 defines the research questions and establishes a research methodology for the
Ph.D. research by assessing the literature available on the hydroelastic modelling methods
and design considerations of fish cages. The scope and hypotheses of the current Ph.D.
research are elucidated, and the whole research outcome of the Ph.D. thesis is divided into
three study elements based on the development stage of the hydroelastic model of open-net
fish cages.

Chapter 4 proposes a semi-analytical solution to describe the interaction between waves
and open net cages. The results demonstrate that the proposed modelling framework could
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give reasonable predictions for the hydroelastic behaviours of submersible flexible fish
cages.

Chapter 5 improves the developed solution by introducing the membrane theory of
shells for the governing equation of the cage structure. The improved model provides
a more realistic solution to the wave response of cage structures. The characteristics of
the scattered waves surrounding the cage and its corresponding dynamic response were
identified.

Chapter 6 extends the model presented in Chapter 5 into the case with multiple net
cages. Fish farming usually consists of multiple aquaculture pens. This study leads to a
more general simulation model, and the properties of the wave interference phenomenon
and mean wave drift effect in the fish cage array are implied.

Finally, Chapter 7 elaborates on some significant conclusions about the Ph.D. research.
A general discussion is presented about the research outcomes, and this thesis is concluded
by highlighting some key research findings. The significance, novelty and scientific
contributions of the present studies are summarised, and the research limitations and future
work lines are outlined as well.
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Chapter 2

Literature Review

2.1 Introduction

An optimal fish cage design should provide adequate and suitable living spaces for fish
under limited environmental conditions. Furthermore, the structures should be sufficiently
strong to resist environmental loads as well as easy to maintain. In the design of fish
farms, it is essential to understand the mechanisms of hydrodynamic actions and structural
dynamic response for fish cages exposed to marine environments. This chapter reviews
relevant studies on fish cages from the perspectives of fluid dynamics and structural and
elastic dynamics, which provides theoretical foundations for the establishment of this Ph.D.
study’s hydroelastic analysis model.

Simulation techniques related to fish cage systems have always been a topic worthy of
research attention. Laboratory tests or field measurements are the most direct and effective
methods of hydroelastic analysis. However, physical simulations are limited by the design
dimensions, equipment conditions, and laboratory costs. Moreover, it is relatively difficult
to monitor and measure in-field experiments, which are susceptible to complex external
factors and disturbances. Therefore, numerical modelling is an effective and flexible tool,
but challenges exist when establishing the numerical model of a fish cage. Chen (2016)
highlighted the following three main aspects in which such challenges manifest:

i) A net is a complex structure composed of numerous twines, and the design scale of
fish cages in practice is usually greater than 10 m in diameter; therefore, detailed
modelling is not feasible for the cages with actual scales in practising;

ii) The hydrodynamic modelling of fish cages is a multiscale problem. Microscopically,
the diameter of normal net twine is approximately 2-5 mm, and determining the
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Table 2.1 Degree of exposure for waves and currents (NS9415, 2009).

effects of viscosity and turbulence in the boundary layer requires a relatively small
scale for spatial discretisation. However, a macroscopic analysis of the fish cage
system requires a relatively large computational domain with millions or even billions
of computing grids, which is also extremely difficult and expensive;

iii) The net material is a relatively flexible structure. In real sea conditions, considering
the interaction of the flow field influenced by the structural deformation is essential.

These aspects imply that the most appropriate modelling techniques should be developed
for this complex system. In reviewing the relevant literature, various rational methods were
found to have been proposed for the hydroelastic analysis of net cages. The remainder of
this chapter comprehensively elaborates on these methods for the simulation modelling of
fish cages.

2.2 Hydrodynamic actions and analysis in marine aqua-
culture

2.2.1 Hydrodynamic responses

When marine structures are exposed offshore, the environmental factors will naturally be
more complex. They mainly include the actions of currents, waves and winds, among
others. The Norwegian aquaculture standard NS9415 (2009) defines the degree of exposure
for waves and currents, as presented in Table 2.1. The hydrodynamic conditions have five
exposure levels - namely small, moderate, medium, high and extreme, according to the
ranges of wave conditions and current velocities.

10
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2.2 Hydrodynamic actions and analysis in marine aquaculture

I. Current

Ocean currents refer to the movements of seawater caused by various environmental
actions. They can be divided into the following components (Faltinsen, 1993):

uuuc = uuut +uuuw+uuus+uuum+uuuset−up+uuud, (2.1)

in which:

uuut is the tidal current component;

uuuw is the wind-generated current component;

uuus is the Stokes drift current component;

uuum is the major ocean circulation component;

uuuset−upis the component due to set-up phenomenon and surge;

uuud is the local density-driven current component.

Furthermore, several other factors can also contribute to the effect of currents on fish
cages. For example, since the characteristic time of internal waves is 20 minutes, they are
considered a stable current within a depth of 300 m, and the maximum horizontal velocity
may reach up to 3 m/s during a 100-year return period (Faltinsen, 2014). This may also be
a factor that cannot be ignored for aquatic facilities that are located extremely far away
from the coastline with quite deep water depth, such as Shenlan No. 1 in China.

Drag forces caused by excessive current velocities can cause severe deformation to as
well as reduce the volume of the net cage and critical mooring loads (Lader and Fredheim,
2006). The reduction in cage volume leads to a reduction in swimming space and increased
living stress on farmed fish, resulting in a decline in growth (Conte, 2004). Additionally,
the intensity and period of turbulence inside the net cage can also affect the manoeuvring
of fish while swimming (Kim, 2012). In practice, current velocities in the range of 0.1 -
0.6 m/s are most suitable for salmon farming, but breeding salmon in environments where
current velocities exceed 1 m/s is also not recommended (reviewed by Chu et al. (2020)).
However, currents also have several positive effects: First, they can accelerate the transport
of deposited wastes to purify the water around the fish cage. Helsley and Kim (2005)
conducted a field test in the wake region of a submerged biconical fish cage. Ammonia
(NH4+) was used as a tracer to measure the mixing in the wake stream. Significant dilution
occurred in the first two diameters downstream of the cage, and the concentration of NH4+
was reduced 10-fold. This indicated that the water in the wake region was replaced by

11



Literature Review

Fig. 2.1 Configuration of a typical net structure.

fresh water from the outer region. In addition, because of the current action, the slack in
the net was also reduced (Lader and Fredheim, 2006).

The flow drag force is composed of the pressure difference and viscous stress. The
drag force acting on the net is generally believed to be determined by the angle of flow
attack, the solidity ratio, the Reynolds number, and material properties, among others. The
solidity ratio S n is to indicate the density of the net mesh instead of the porosity, which is
defined as the net projected area divided by the outline area (Fredheim, 2005):

S n =
2dtwine

ltwine
−

(
dtwine

ltwine

)2

, (2.2)

where dtwine is the diameter of the net twines, and ltwine is the distance between the net
twines, as illustrated in Fig. 2.1. The Reynolds number Re has been proposed to describe
the ratio of inertial forces to viscous forces within the fluid, which is defined for the net
structure as follows:

Re =
ρ|uuu∞|dtwine

µ
, (2.3)

where uuu∞ is the incoming current velocity, ρ is the density of the fluid, and µ is the dynamic
viscosity of the fluid.

The experimental investigation by Tang et al. (2017) illustrated that, for an inclined net
panel in the current, the drag force increases with the greater angle between the incoming
flow velocity vector and the tangential vector of the screen, but the lift force reaches
its peak at an angle of 50°. Tang et al. (2018) conducted extensive physical water tank
tests for the fluid resistance effect of net panels. Their results clearly demonstrated that
the drag force increases with a greater solidity ratio S n. When S n was low (0.190), the
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relationship between the fluid resistance coefficients of the net panel and the Reynolds
numbers Re was similar to that of a cylinder. Therefore, for fish cage nets with a high
solidity ratio, the interactions between the net twines cannot be ignored. The measured
data indicated that the effect of the net knot was also negligible under a flow condition
with low Reynolds numbers. Additionally, the discrepancy in the fluid resistance of nylon
and steel is explained by the material hydrophilicity and surface roughness, while it is
independent of the Reynolds number (Tang et al., 2018).

The consideration of FSI is also necessary when estimating the drag force in fluids.
Through experimental investigations of the geometry of fish pens in a uniform flow, Lader
and Enerhaug (2005) found that the simple drag calculation formula exhibited a large
error with the experimental results; by contrast, a numerical model that considered the
dependency between force and deformation provided a more accurate estimation. Yao et al.
(2016) compared their simulated results between numerical models with and without FSI,
wherein a notable deviation manifested under high current velocities.

In addition, the topic of wakes caused by the blocking effect of fish cage nets has
received much attention in engineering. Neglecting the flow velocity reduction at the rear
of the cage will result in an overestimation of the mooring force by up to 22% (Faltinsen
and Shen, 2018). Moreover, in an array of net cages, those further downstream might
experience less water exchange; thus, there would be lower concentrations of dissolved
oxygen and increased waste pressure compared with the upstream cages, and the interaction
of the wakes due to each cage would result in stronger combined water blockage (Klebert
et al., 2013). Cheng et al. (2020) concluded that the wake effects around a cage can be
classified as twine-to-twine, net-to-net or cage-to-cage interactions. Normally, velocity
reduction is a function determined by the Reynolds number, solidity ratio and incoming
flow angle (Cheng et al., 2020). Some empirical evaluations of the velocity reduction
through a net panel can be found in the experimental tests and calculations of Løland
(1991), Patursson (2008) and Kristiansen and Faltinsen (2012).

The impact of the drag effects of twines on the flow field can be captured through
experimental measurements and numerical simulations as the water flows through the
net. Bouhoubeiny et al. (2011) used the time-resolved PIV method to conduct flow
field measurements around trawl nets for cod, and they also extracted large-scale energy
vortices using the proper orthogonal decomposition method. Based on an analysis of the
vortex shedding frequency, the authors found that the vortex shedding near the wake was
synchronised with the vibration of the net structure. Through numerical simulations, Shim
et al. (2009) found that nets with low porosities (i.e., fouling leads to serious net blockage)
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might cause flow recirculation, while Helsley and Kim (2005) indicated that the tilt angle
of the fish cage could generate additional turbulence and cause large-scale vortices.

Generally, finer nets can increase the lateral flow velocity around the cage and sig-
nificantly reduce the flow velocity in the wake region (Gansel et al., 2010). Gansel et al.
(2010) defined the following three regimes for describing the flow around the cylindrical
net cage (reviewed by Klebert et al. (2013)):

i) 0 < S n ≤ 0.25: At this time, a large amount of water can pass through the net and
will evoke a clear vortex street in the wake region;

ii) 0.25 < S n ≤ 0.75: The interaction of the wakes causes an additional blocking effect
as well as more water to be compressed around the cage;

iii) S n > 0.75: The porous cage is currently similar to a solid cylindrical shell, and more
water blockage and vortex shedding occur around it.

Therefore, different solidity ratios or porosities of the net significantly determine the flow
condition’s characteristics around the fish cage.

II. Waves

Waves are a common form of energy transfer in the sea. Excessive hydrodynamic loads
caused by waves may not only damage cages and mooring systems but also injure fish (the
cage is over squeezed or the fish is rammed) (Chu et al., 2020). Different from the long-
term deformation caused by a steady flow, the wave excitation force will cause periodic
motions of the cage, which are collectively known as the structural dynamic response.
When the wave frequency is close to the natural frequency of the structure causing the
resonance, the structure will have a significant dynamic response. Therefore, in the design
of offshore floating structures, it is essential to avoid the occurrence of resonance.

Higher waves can easily cause serious destruction and the collapse of floating fish
cages, leading fish to escape, which would result in tremendous economic losses. The
Douglas sea scale is a standard for describing the wave intensity of wind seas and swells.
Table 2.2 presents the classification of wind-sea states and swells from Morrisey et al.
(2015). Moreover, oceanic freak or rogue waves are characterised by an unusually large
ratio between the maximum wave height and the significant wave height (i.e., greater than
two; Faltinsen (2014)).

Because of the nonlinear effects of surface waves, the applicable wave theory can be
determined using the normalised wave height H/

(
gT 2

)
and the normalised water depth

h/
(
gT 2

)
according to Méhauté (1976), as illustrated in Fig. 2.2. The linear wave and
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Table 2.2 The Douglas sea scale for wind-sea states and swells (Morrisey et al., 2015).
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Fig. 2.2 Range of application of different wave theories (Méhauté, 1976).

Stokes wave theory are found to be applicable to the deep water region, but the shallow
water condition is mainly suitable for the conidial wave and solitary wave theory. The
waves in the intermediate depth region can be described using a variety of wave models.
Song et al. (2005) indicated a greater calculation error between the second-order Stokes
wave theory and the linear wave theory for estimating the wave forces acting on a cubic
cage as the wave height increases or the water depth decreases. The mean wave drift load is
also a nonlinear phenomenon caused by the first-order potential, wherein the second-order
components do not contribute (Faltinsen, 1993), so the mean drift force can be directly
estimated by the small-amplitude wave theory. Moreover, if the studied case is in irregular
waves, the different wave spectrums could have an obvious influence on the motion of the
cage (Qin et al., 2020).

Different from constant currents, since the wave-generated flows are unsteady, the
inertial effect of the fluid cannot be ignored. The Keulegan–Carpenter (KC) number is a
dimensionless number used to describe the relationship between the viscous and inertial
forces on an object in an oscillating flow field. For net structures, it is defined as follows:

KC =
uaT

dtwine
, (2.4)
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2.2 Hydrodynamic actions and analysis in marine aquaculture

where ua is the velocity amplitude of the water particle, and T is the oscillatory period of
the fluid.

Dong et al. (2019) investigated the hydrodynamic forces on the net panel in a wave
flume. Their experimental results revealed that the horizontal component of the wave force
was greater than the vertical component, while the horizontal component significantly
depended on the KC number. On the other hand, a frequency domain analysis revealed
that the high-frequency nonlinear effect was more obvious when the ratio of wavelength to
water depth increased. The fitting of experimental data by Hamelin et al. (2013) indicated
that the hydrodynamic drag coefficient of the slatted screen in an oscillatory flow was close
to the results in a steady flow when KC > 100. This implies that the fluid inertial force is
minor in this case. Furthermore, calculations performed by Zhao et al. (2008) proved that
the inertia effect can be ignored when the KC number of the net exceeds 150. Furthermore,
Lader et al. (2007a) experimentally demonstrated that high-wave energy environments
(i.e., greater wave steepness and longer wave period) and nets with high solidity ratios S n

lead to an increase in wave force.

Usually, the cage being immersed under the free water surface is beneficial for reducing
the imposed wave loads. The theoretical analyses of Su et al. (2015) and Mandal and
Sahoo (2016) have demonstrated that the peak of the wave loads appeared near the top of
the net chamber. Moreover, the experimental results of Liu et al. (2019) illustrated that the
tension of the mooring cables and the movement of the floating collar were significantly
weakened as the diving depth of the cage increased. However, when the fish cage reached
a certain depth, the attenuation trend tended to stabilise. Based on the results of Liu et al.
(2019), one-third of the water depth was determined to be the optimal submergence depth
for the fish cage. Additionally, the numerical modelling of Xu et al. (2013a) revealed
that the wave steepness had a minor effect on the mooring tension under the submerged
condition compared with the floating condition.

The blocking effect and motion of the net cage cause certain perturbations to the surface
waves. Based on the potential flow theory, the hydrodynamic force exerted on the floating
structure can be divided into the following two parts (Faltinsen, 1993):

i) The Froude–Kriloff force due to the incident waves and the force generated by wave
diffraction due to the presence of the structure. These two forces are collectively
referred to as the wave excitation force;

ii) The added mass and damping effect as a result of wave radiation, as well as the restor-
ing force of the static water due to the floating body deviating from the equilibrium
position.
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Lader et al. (2007b) analysed the damping effect of nets on passing waves. For longer
waves, nets with higher solidity ratios provided more effective damping of wave energy,
while wave damping was related to the length of the twine for shorter waves. Furthermore,
a more obvious influence of the net on the geometry of the wave occurred as the wave
steepness increased. Selvan et al. (2021) derived analytical solutions for surface wave
scattering around multiple circular net cages, and some of the regulations are summarised
as follows:

i) Wave amplitude attenuation occurs on the leeward side of the cage, and the attenua-
tion is more pronounced under high-frequency wave conditions;

ii) Constructive interference occurs for an array of cages with small spacings, and the
scattering of waves is intense when the number of cages is increased.

To quantify these effects, Gharechae and Ketabdari (2022) introduced the energy transmis-
sion index (ET I) to represent the transmitted portion of incident wave energy:

ET I =

a∫
0

2π∫
0

ξa
2rdθdr

/[(H
2

)2
πa2

]
, (2.5)

where ξa is the amplitude of the free water surface elevation, H is the incident wave height,
and a is the cage diameter.

For closed fish cages, the motion of the cage under wave excitation can cause an obvious
water-sloshing phenomenon inside it. Because of the relatively large excitation amplitudes
involved in marine applications, resonant sloshing may involve critical nonlinear free water
surface effects (Faltinsen and Shen, 2018). Furthermore, the sloshing response is predicted
to be infinite at the eigenfrequencies of the cage system through the linear potential flow
theory instead of the finite amplitude in reality; thus, viscous damping and nonlinear free
water surface effects should be included (Strand and Faltinsen, 2017).

Faltinsen and Timokha (2009) developed a nonlinear multimodal method for describing
global sloshing loads in a time-efficient manner without considering wave breaking in
deep water. Severe sloshing originates from the lowest sloshing mode with nonlinear
energy transfer; therefore, some strategies for avoiding the excitation of the lowest mode
by moving the cage in an elastic manner are as follows (Faltinsen and Timokha, 2009):

i) A control system for body motion monitoring;

ii) An air-turbine absorbing the sloshing energy;

iii) The assembly of a compartment to prevent swirling.
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Wiegerink et al. (2022) also proposed the novel concept of slosh suppression blocks
assembled on floating collars and validated their efficiency using water tank tests. Notably,
a considerable change might occur in the motion response of a flexible cage compared
with a rigid cage (Strand and Faltinsen, 2019).

In the ocean, another common form of seawater motion is the interaction between
waves and currents. Currents can significantly affect the load caused by waves (Lader
and Fredheim, 2006). In a numerical investigation, Xu et al. (2013b) found that the cage
suffered the most critical hydrodynamic forces when the angle between the incident wave
and the incoming current was less than 30°. The dominant mean hydrodynamic loads
increase significantly under long and steep waves relative to currents only (Kristiansen and
Faltinsen, 2015).

Kristiansen and Faltinsen (2015) simply superposed the current velocity and the wave
water particle velocity in estimating the hydrodynamic force on a fish cage net. Zhao
et al. (2007) and Xu et al. (2013a,b) have adopted the theory of Hedges and Lee (1992) to
equivalate the combined waves and currents to new waves with interacted frequencies, wave
heights and wavelengths for the cases with single or multiple cages, respectively. Moreover,
Liu et al. (2021) introduced currents to the analytical solution for the interaction between
waves and circular net cages, but they did not consider the potential for structure-induced
disturbance to the current field.

Considering the aforementioned research comprehensively, the influence of waves is
highly significant to the safety of fish cage systems. Therefore, floating breakwaters are
essentially considered to attenuate the impacts of waves (Dai et al., 2018).

2.2.2 Empirical equations of hydrodynamic loads

Empirical formulas based on theoretical analyses and experimental investigations are
usually simple and practical, so they are often applied for estimating hydrodynamic forces
on fish cage nets. This section discusses two commonly applied empirical formulas, namely
the Morison-type equation and the screen-type methods.

I. Morison-type equation

The net structure can be treated as consisting of mesh bars (as seen in Fig. 2.3). The
Morison equation (Morison et al., 1950) is an empirical formula that is commonly used to
evaluate the hydrodynamic force acting on slender bars, where the force is divided into
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Fig. 2.3 Sketch of the method when utilising the Morison-type equation: F1 is the drag force when
the net twine is inclined with respect to the incoming flow velocity vector, and F2 is the drag force
when the net twine is orthogonal with the incoming flow velocity vector.

two components, namely the drag forces FFFd and the inertial forces FFFi:

FFF = FFFd +FFFi =
1
2
ρCddtwine |uuu|uuu+ρ (1+Cm)Vtwine

duuu
dt
, (2.6)

where uuu is the flow velocity, dtwine is the diameter of the twine, Vtwine is the volume of
the twine, Cd is the drag coefficient, and Cm is the added mass coefficient. In Eq. (2.6)
the first term on the right-hand side represents the drag force due to viscous effects and
pressure differences, while the second term is the inertial force due to unsteady flow.
According to Brebbia and Walker (1979), for movable members, the Morison equation can
be generalised as follows:

FFF =
1
2
ρCddtwine |uuur|uuur +ρVtwine

duuu
dt
−ρ (Cm−1)Vtwine

duuur

dt
, (2.7)

where uuur is the velocity of the flow relative to the net twine. If the net twine is inclined
relative to the incoming flow, the drag force can be decomposed into a normal component
and a tangential component following Haritos and He (1992):

FFF =
1
2
ρCdndtwine |uuun|uuun+Cdτuuuτ+ρCmVtwine

duuun

dt
+ρVtwine

duuu
dt
, (2.8)

where uuun and uuuτ are the normal and tangential velocity components, and Cdn and Cdτ are
the drag coefficients in the normal and tangential direction, respectively.

The drag coefficient Cd is usually considered to be related to the Reynolds number Re,
where plotting curves of Cd versus Re can be found in the book of Hoerner (1965). From
the empirical formula of Choc and Casarell (1971), the drag coefficient of the slender bar
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is as follows:

Cdn =


8π
Re

s
n

(
1−0.87s−7

)
(0 < Ren ≤ 1)

1.45+8.55Re
−0.90
n (1 < Ren ≤ 30)

1.1+4Re
−0.50
n

(
30 < Ren ≤ 105

) ,

s = −0.077215665+ ln (8/Ren) .

(2.9)

For the knot part of the net, Fredheim (2003) suggested a drag coefficient Cd in the range
of 1.0 - 2.0 when it is modelled as a sphere. Furthermore, under unsteady currents, an
added mass coefficient Cm of 1 is suggested for the circular cross-section (Wang and Liang,
2013). Nevertheless, under wave actions, the effects of KC numbers are also significant.
Sarpkaya and Isaacson (1981) demonstrated the factors that determine Cd and Cm through
a nondimensional analysis as follows:

(Cd,Cm) = f
(
KC,

KC

Re
,
µs

dtwine

)
, (2.10)

where µs is the material roughness coefficient of the net twine. The experimental measure-
ments of Dong et al. (2019) indicated that the horizontal wave force heavily depends on
the KC number, where Cd decreases but Cm increases as the KC number increases. Further-
more, the net solidity ratio S n might be the fourth factor influencing these hydrodynamic
coefficients (Fredheim, 2003).

The deformation of net panels and cages under the action of currents have been
simulated using Morison-type equations, producing reasonable results (Bris and Marichal,
1998; Chen et al., 2021; Li et al., 2006; Myrli and Khawaja, 2019; Tsukrov et al., 2003).
For the wave action, the Morison equation is valid for twine elements with a diameter
much smaller than the wavelength, and the diffraction effect on the free water surface is
also ignored (Tsukrov et al., 2003). Zhao et al. (2008) compared the calculated results
of the Morison equation with experimental data for net panels in a wave flume, where
there were no significant discrepancies. The authors highlighted that, when evaluating the
wave force, the influence of the KC number and inertial force can be ignored, and that it is
feasible to use only the drag coefficient Cd related to the Reynolds number Re. However,
as the conclusions of Zhao et al. (2008) are not consistent with the experimental results of
Dong et al. (2019), further studies are required to clarify the effects of the KC number and
inertial force still.

The Morison-type equation provides a simple method of calculating the hydrodynamic
load on the net cage, and the aforementioned experimental and numerical results indicate
that it is feasible in engineering practice. However, the Morison equation still has some
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drawbacks: First, the interaction between the net twines is ignored (e.g., twine-to-twine
wake interaction effects). The flow around the twine elements is usually assumed not to
be disturbed by the interaction with other twines (Tsukrov et al., 2003). Notably, Berstad
et al. (2012) suggested that the corrected flow velocity surrounding the net mesh could be
determined by conservation of momentum. On the other hand, the influences of Re and
KC still require further discussion. When a vortex street is formed in the wake behind the
twine cylinder, the cylinder will also impose a periodic lift excitation force perpendicular
to the incoming flow direction, which is related to Re and KC (KC is only for oscillating
flow) (Wang and Liang, 2013).

II. Screen-type method

Another hydrodynamic force empirical model for fish cage nets is the screen-type method.
Kristiansen and Faltinsen (2012) presented a detailed expression for this method.

The net structure can be regarded as the composition of several super elements (the
shading area in Fig. 2.4), whose centres are consistent with the knot centres. Each super
element can be divide into four planar screens. The drag force FFFD and lift force FFFL acting
on each screen can be decomposed into a normal force FFFN perpendicular to the plane and
a tangential force FFFT tangential to the plane. The force magnitude can be described as
follows:

FD =
1
2

CDρAsur
2, FL =

1
2

CLρAsur
2,

FN =
1
2

CNρAsur
2, FT =

1
2

CTρAsur
2,

(2.11)

where As is the area of the screen, and the coefficients CD, CL, CN and CT satisfy the
following relations:

CD =CN cosα+CT sinα, CL =CN sinα−CT cosα. (2.12)

CD and CL can be expanded in Fourier series dependent on the attack angle of flow α:

CD (α) =CD (0)
∞∑

n=1

a2n−1 cos(2n−1)α,

CL (α) =CL

(
π

4

) ∞∑
n=1

b2n sin2nα,

(2.13)
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Fig. 2.4 Sketch of the screen-type method.

and CN and CT are functions determined by the Reynolds number Re and solidity ratio S n:

CN (α) =
CdS n (2−S n)

2(1−S n)2 cos2α, 0 ≤ θ ≤ π/4,

CT (α) =
4CN (α)

8+CN (α)
, 0 ≤ θ ≤ π/4,

(2.14)

where Cd is dependent on Re from Eq. (2.9). Furthermore, from the experimental investi-
gation of Tang et al. (2018), the effects of net knots and net materials on the coefficient CD

are relatively minor, and the influence of knots can be ignored when Re ≤ 400.

In Eq. (2.13), the unknown constants can be calibrated using experimental data, and
it is usually an acceptable approximation to retain two or three truncation terms. Some
calibrated parameters or empirical formulas about the coefficients CD and CL has been
proposed (Cheng et al., 2022; Kristiansen and Faltinsen, 2012; Løland, 1991; Martin et al.,
2020; Yao et al., 2016).

The screen-type model greatly compensates for the drawback of the Morison-type
equation, ignoring the interaction between net twines, and it has been proven to be a
reasonable approximation when evaluating the hydrodynamic loads on nets (Kristiansen
and Faltinsen, 2012, 2015; Lader and Fredheim, 2006; Løland, 1991). In structural
modelling, its principle is to replace the bar elements with equivalent super elements, and
it can be coupled with computational fluid dynamics (CFD) models (Lader and Fredheim,
2006), as discussed in the subsequent section.

However, few researchers currently consider the effect of inertial forces and the KC

number under waves in the screen-type model; therefore, this method only performs more
reasonably for constant current actions. For the net panel, Lader et al. (2007a) compared
the measured wave forces in a water tank with the results calculated using the Morison
equation and screen-type model. By contrast, the screen-type model only provided a
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favorable evaluation for the net with high solidity ratios. Alternatively, Eq. (2.6) predicts
the horizontal wave force more accurately, while Eq. (2.8) provides the best result for the
vertical wave force. Therefore, the Morison equation still has potential in the evaluation of
wave forces. Actually, the accuracy of the Morison-equation model and screen-type model
in predicting the hydrodynamic loads should be both highly dependent on the accurate
selection of the hydrodynamic coefficients.

Most researchers directly adopt the water particle velocity of incoming currents or
incident waves when applying empirical formulas to assess hydrodynamic loads on the
net. However, in actual conditions, the flow velocity would be significantly reduced in the
wake behind the net (i.e., the flow field is disturbed by the net), and the diffraction effect
of waves cannot be ignored because a fish cage is a large-scale structure relative to the
wavelength macroscopically. In addition, the influence of rigid body motions or elastic
deformations of the structure on the flow field is an issue in need of attention. Therefore,
establishing a hydrodynamic simulation model is essential.

2.2.3 Potential flow models

As previously mentioned, for fish cages with large dimensions, the presence of the structure
will have a negligible perturbation on the wavefield. On the other hand, waves in the ocean
are gravity waves, which can be regarded as a kind of potential motion (Wang and Liang,
2013). Therefore, solving the interactions between waves and fish cages using the potential
flow theory is feasible.

At present, in the potential flow model, the net plane is usually treated as the boundary
of the fluid domain governed by the porous medium theory. On the other hand, the methods
for solving the Laplace equation include the eigenfunction expansion method, boundary
element method (BEM), finite element method (FEM) and scaled boundary FEM (SBFEM).
This section elaborates on these methods as well as related applications of the potential
flow models in detail.

I. Governing equation

If the fluid is assumed to be irrotational and inviscid, the fluid velocity vector uuu (x, y, z, t)

can be expressed as the gradient of the velocity potential Φ (x, y, z, t), that is, uuu = ∇Φ.
In this scenario, the flow field can be governed by the Laplace equation due to mass
conservation:

∇2Φ =
∂Φ2

∂x2 +
∂Φ2

∂y2 +
∂Φ2

∂z2 = 0. (2.15)
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For large floating offshore structures, the velocity potential satisfies the linear superposition
of the incident potential, diffraction potential and radiation potential, namely Φ = ΦI +

ΦD+ΦR, while they all satisfy the Laplace equation. Therefore, by solving the Laplace
equation with known boundary conditions, the velocity potential and the corresponding
fields of flow velocity, pressure and free water surface elevation can be obtained.

II. Boundary conditions

For a mathematical physics equation, in addition to the governing equation, the initial value
conditions and boundary value conditions corresponding to the specific problem should
also be determined. Because the wave motion is assumed to be a harmonic oscillation, the
difficulty of deriving its solution depends on the processing of the boundary conditions.

According to Dean and Dalrymple (1991), at the free water surface elevation z = ξ, the
kinematic boundary condition is

∂Φ

∂z
|z=ξ=

∂ξ

∂t
+
∂ξ

∂x
∂Φ

∂x
|z=ξ, (2.16)

and the dynamic boundary condition is

∂Φ

∂t
|z=ξ +

1
2

(∇Φ · ∇Φ) |z=ξ +gξ = 0. (2.17)

Because the viscosity of the fluid is ignored in the potential flow theory, the slippery
condition is invoked on the seabed boundary with a constant water depth:

∂Φ

∂z
|z=−d= 0. (2.18)

The perturbation theory assumes that the solution of the wave motion can be expanded
by a power series with a small parameter ε:

Φ =

∞∑
n=1

εnΦn = εΦ1+ε
2Φ2+ · · · ,

ξ =

∞∑
n=1

εnξn = εξ1+ε
2ξ2+ · · · ,

(2.19)

and the velocity potential Φ at z = ξ can be expanded in a Taylor series:

Φ |z=ξ= Φ |z=0 +ξ
∂Φ

∂z
|z=0 +

ξ2

2!
∂2Φ

∂z2 |z=0 + · · · . (2.20)
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By substituting Eqs. (2.16) and (2.17) into Eq. (2.20), one obtains the following:

ε

(
∂Φ1

∂z
−
∂ξ1
∂t

)
+ε2

(
∂Φ2

∂z
−
∂ξ2
∂t
+ ξ2
∂Φ2

∂z
−
∂ξ1
∂x
∂Φ1

∂x

)
+ · · · = 0,

ε

(
∂Φ1

∂t
+gξ1

)
+ε2


∂Φ2
∂t +gη2+

∂
∂t

(
ξ1
∂Φ1
∂z

)
+1

2

[(
∂Φ1
∂x

)2
+

(
∂Φ1
∂z

)2
] + · · · = 0.

(2.21)

In Eq. (2.21), only when the coefficient corresponding to εn is 0, the left-hand sides of
the equations are equal to zero, which represents the kinematic and dynamic boundary
conditions for the nth-order velocity potential. In addition, the first-order scatter potential
ΦS

1 = Φ
D

1 +Φ
R

1 satisfies Sommerfeld’s radiational condition (Sommerfeld, 1949) at
infinity, whose form in a cylindrical coordinate system (r, θ, z) is as follows:

lim
r→∞

√
r
(
∂ΦS

∂r
± iκ0ΦS

)
= 0, (2.22)

where κ0 is the wavenumber.

According to the Bernoulli equation, the pressure p∗ is:

p∗ = −
∂Φ

∂t
−

1
2
ρ (∇Φ ·Φ)−ρgz, (2.23)

and its linearised form is
p∗ = −

∂Φ

∂t
−ρgz. (2.24)

The mean wave pressure in a wave period can be obtained by substituting the first-order
solution into Eq. (2.23) and the time-averaged operation.

Because the thickness of the net panel is quite small relative to the flow scale, it is often
treated as a domain boundary and governed by the porous medium flow model, which
mainly includes the linear model and the quadratic model.

i. Linear porous flow model The linear model implies that the flow through the perfo-
rated structure satisfies Darcy’s law, where the pressure drop linearly depends on the normal
velocity of the permeation flow. According to Yu and Chwang (1994), the momentum
equation of the flow within the porous medium under wave action is as follows:

fi
∂uuun

∂t
= −
∇p∗

ρ
− frωuuun, (2.25)

where the constants fr and fi are the linearised coefficients of the porous resistance effect
and fluid inertial effect, respectively.
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For a thin-walled structure, assuming the pressure across its thickness is approximated
linearly and considering the structural motions, Eq. (2.25) can be rewritten on its cross-
section equation S (r, θ) = 0 as follows:

∇Φ ·nnn = ik0τ
(
Φ−−Φ+

)
+
∂xxx
∂t
·nnn |S (r,θ=0), (2.26)

where Φ− and Φ+ represent the velocity potential on the leeward and windward sides of the
porous structure, respectively; nnn is the unit normal vector on the structural body surface; xxx

is the structural displacement relative to the mean position; and the porous effect parameter
τ is

τ =
τ0 ( fr + i fi)

κ0ts
(

fr2+ fi2
) = τr + iτi, (2.27)

where τ0 is the porosity of the porous medium and ts is its thickness. In Eq. (2.27), the
real part τr represents the porous resistance effect of the medium, while the imaginary part
τi means the fluid inertia effect. Eq. (2.26) also means that the flow velocity is equal to the
permeation velocity plus the velocity of the structural motion in the normal direction of the
interface S (r, θ) = 0. Notably, Eq. (2.26) is only a linear approximation on the structural
body surface, as the boundary condition cannot be satisfied at the instantaneous position of
the wet surface. This requires the deformation amplitude of the structure to be relatively
small compared with its cross-sectional dimension by preserving the linear terms in the
Taylor expansion (Faltinsen, 1993).

Ito et al. (2014) offered another set of empirical formulas for τr and τi as follows:

τr =
1

2π
[27.73/ (κ0H/2)]τ02

1+ [0.5510−0.01998/ (κ0H/2)]τ0
,

τi =
1

2π
0.002579[27.73/ (κ0H/2)] (k0lcube/2)(κ0H/2)−1.547 τ0

2

1+ [0.5510−0.01998/ (κ0H/2)]τ0
.

(2.28)

However, the formula of τi is only for the cube cage with a side length lcube, and the added
mass effects are considered due to the acceleration of the net.

As the linear model is relatively simple to derive an analytical solution, it has been
adopted in studies on the interaction between waves and flexible net cages by Su et al.
(2015), Mandal and Sahoo (2016) and Selvan et al. (2021). Nevertheless, Darcy’s law
might be not applicable to problems where the openings are large and sharp enough
to separate the flow, and the frictional force is negligible compared with the pressure
difference force (Molin, 2011).
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ii. Quadratic porous flow model Another theory considers the pressure drop acting on
the perforated structure to have a quadratic relationship with the normal velocity of the
penetration flow:

∆p =
1
2

Kρ |uuun|uuun |S (r,θ)=0 . (2.29)

Molin (2011) believed that the quadratic model should satisfy the following assumptions:

i) The structural thickness can be negligible;

ii) Flow separation occurs through the openings, resulting in a quadratic discharge;

iii) The openings are infinitely small and numerous.

The discharge coefficient K can be calibrated using the screen-type method. Gjøsund
and Enerhaug (2010) presented the following empirical formula of K for the net panel in a
steady flow with an attack angle α:

K (α) =
[
7.0
Re
+

0.9
log(Re+1.25)

+0.005log(Re)
]

1−β2

β2 sin2α. (2.30)

The formulas based on the experiments in steady flow conditions may be applicable to
the scenario in an unsteady flow as well when the KC number is large enough, because
CD/CD

steady ≈ 1 at this time (Hamelin et al., 2013).

By substituting Eq. (2.24) into Eq. (2.29), one obtains the following:

Φ−−Φ+ =
1
2

Kρ
∣∣∣∇Φ− ·nnn∣∣∣ (∇Φ− ·nnn) |S (r,θ=0) . (2.31)

The nonlinear term in Eq. (2.31) can be solved through iterations. Molin (2011) suggested
introducing a relaxation to accelerate the convergence:

Φ−
( j)
−Φ+

( j)
=

1
2

Kρ
∣∣∣∣∇Φ−( j−3/2)

·nnn
∣∣∣∣ (∇Φ−( j)

·nnn
)
|S (r,θ=0), (2.32)

where ( j−3/2) means the averaged value between the previous two iterations ( j−1) and
( j−2).

The quadratic model may be more realistic than the linear model because it accounts
for the flow separation due to large openings. However, according to the experimental
investigation from Ito et al. (2014), the linear model can still predict the flow through the
net reasonably in specific circumstances. Furthermore, in practical situations, the viscous
forces should be considered due to the increased porosity, roughness and thickness of the
net due to bio-retention.
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In Eqs. (2.26) and (2.31), the unit normal vector nnn of the curve equation S (r, θ) = 0
for the structural cross-section is required, which was given by Zheng et al. (2019) in a
cylindrical coordinate system as follows:

nnn =
1√

1+
(

1
r
∂S
∂θ

)2

(
1,

1
R
∂S
∂θ
,0

)
. (2.33)

III. Methods of solutions

Once the governing equation and boundary conditions of the research problem have been
determined, the corresponding particular solution can be obtained using analytical or
numerical methods. Analytical solutions usually have a higher precision and are not
limited by the scale of the studied domain; however, numerical solutions may offer better
generality, especially for cases with relatively complex geometries.

i. Eigenfunction expansion methods The Laplace equation is a homogeneous linear
partial differential equation; thus, it is easy to obtain its general solution form. Herein,
we mainly talk about the solving method in the cylindrical coordinate system (r, θ, z)

(most fish cages are usually designed with a circular cross-section) and only consider the
first-order wave theory.

Assuming that the oscillation system has reached a harmonic state, the velocity potential
can be expressed by separating the variables:

Φ (r, θ, z, t) = Re
[
φ (r, θ, z)e−iωt

]
= Re

[
R (r)g (θ) f (z)e−iωt

]
. (2.34)

By substituting Eq. (2.34) into Eq. (2.15), the complex amplitude φ (r, θ, z) is also governed
by the Laplace equation, and the form in the cylindrical coordinate system is as follows:

∇2φ =
∂2φ

∂r2 +
1
r
∂φ

∂r
+

1
r2
∂2φ

∂θ2
+
∂2φ

∂z2 = 0. (2.35)

By substituting Eq. (2.34) into Eq. (2.35), an ordinary differential equation system is
obtained: 

r d
dr

(
r dR

dr

)
+

(
κn

2r2−m2
)
R = 0

1
g

d2g
dθ2 = −m2

1
f

d2 f
dz2 = κn

2

. (2.36)
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When κn is a real number, the first equation in Eq. (2.36) is the Bessel equation, whose
linearly independent solutions have the first kind of Bessel function Jm (κnr), the second
kind of Bessel function Ym (κnr), the first kind of Hankel function Hm

(1) (κnr) and the
second kind of Hankel function Hm

(2) (κnr). If κn is an imaginary number, the linearly
independent solutions are the first kind of modified Bessel function Im (κnr) and the second
kind of modified Bessel function Km (κnr). In addition, only Hm

(1) (κnr) and Km (κnr) satisfy
the radiational condition in Eq. (2.22), and only the values of Jm (κnr) and Im (κnr) are
not infinite when r = 0. The solution to the second equation is g (θ) = eimθ, and the third
equation also has two linearly independent solutions eκnz and e−κnz in Eq. (2.36).

The unknown constants κn and m are called eigenfunction values, which are determined
by the boundary conditions. According to the linear superposition principle, the general
form of φ (r, θ, z) is

φ (r, θ, z) =
∑

m

∑
n

Rmn (κnr) fn (z)eimθ, (2.37)

where Rmn (κnr) and fn (z) are linear combinations of the aforementioned fundamental
solutions. Since φ is a periodic function of θ with a period of 2π, Eq. (2.37) is also the
Fourier expansion of φ in the complex domain. As Eq. (2.37) is an infinite series, it is
necessary to analyse the convergence of the solution.

ii. Boundary element method The BEM is often used in the hydrodynamic simulation
of marine structures. Because only the boundary of the studied domain is required to be
discretised, it has higher computational efficiency than the numerical methods based on
volume discretisation.

According to Green’s second identity, the boundary integral equation on the boundary
of the fluid domain S is as follows:"

S

(
φ0
∂φ

∂n
−φ
∂φ0

∂n

)
dS = 0, (2.38)

where φ0 is the source function.

The difficulty of the BEM lies in constructing the source function. As presented by
Sheng et al. (2022), in a finite water depth, φ0 is

φ0 =
1
r
+

1
r̂
+2

∫ +∞

0

(σ+K)cosh[σ (z+h)]cosh[σ (z0+h)]
σsinh(σh)−K cosh(σh)

e−σH J0 (σR)dσ, (2.39)
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in which

r =
√

(x− x0)2+ (y− y0)2+ (z− z0)2,

r̂ =
√

(x− x0)2+ (y− y0)2+ (z+ z0+2h)2,

R =
√

(x− x0)2+ (y− y0)2,

K = ω2/g.

(2.40)

Eq. (2.39) satisfies the boundary condition at the free water surface, seabed and infinity, on
which the integral in Eq. (2.38) is zero. Therefore, it only needs to discretise the boundary
of the body surface.

Ito et al. (2014) used a hybrid method to analyse the cube net cage under waves. The
far-field wave is expressed in the eigenfunction method, and the domain near and inside the
cage is solved using the BEM. Therefore, the source function φ0 does not need to satisfy
the radiational condition at infinity; that is:

φ0 =
1
r
+

1
r̂
. (2.41)

Nevertheless, discretisation is required at the free water surface and the boundary between
the far-field and ambient waves, as the source function cannot satisfy those boundary
conditions.

Gharechae and Ketabdari (2022) developed an analytical solution based on the BEM
for an array of aquaculture cages. If the wave amplitude and steepness are small, the source
function φ0 is as follows:

φ0 = i/4H0 (k0r) . (2.42)

Eq. (2.42) also satisfies the boundary conditions at the free wave surface, seabed and
infinity; therefore, Eq. (2.38) is only limited to the body surface. By expanding the velocity
potential as an eigenfunction series and substituting it into the boundary integral equation
on the cage interface, the particular solution can be obtained.

Some scholars have also adopted a hybrid numerical model to determine the hydrody-
namic loads on large rigid fish cages. Liu et al. (2020) analysed wave scattering due to the
floating steel frame and pontoon using the BEM, while they modelled the net using the
Morison element.

iii. Finite element method The FEM is a volume-discretised method for the whole fluid
domain, which is enclosed by the free water surface, seabed, structural wet surface and
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outer boundary. Different from the abovementioned method of solutions, which can handle
the radiation boundary condition Eq. (2.22) at infinity, the FEM requires the construction
of a damping region to absorb the wave. Here, a damping term is added to the kinematic
free surface boundary condition.

Its principle is to express the velocity potential in each element as the superposition of
the product of the corresponding nodal velocity potential and shape function. By applying
the Galerkin method and the corresponding boundary conditions, a linear equation system is
finally obtained. In addition, discretised schemes for the time steps are required, including
multiple-step and single-step methods. Compared with multiple-step methods, such as the
Adams-Bashforth scheme, single-step methods such as the Runge-Kutta scheme require a
smaller time interval, but they can be applied to dynamic grids because only the values
from the last time step are required (Wang and Wu, 2007).

A detailed description of FEM-based analysis for second-order wave diffraction around
an array of vertical cylinders can be found in Wang and Wu (2007). Yang and Wang (2020)
extended the work into a case with wave–current interaction. However, there is currently
no application of the FEM in wave–porous structure interactions, including fish cages.

The advantage of the FEM is that it can handle complex unstructured grids and achieve
high numerical accuracy. However, compared with the BEM and the SBFEM, the FEM
requires higher computational power due to the discretisation of the whole volume space.
Nevertheless, with the development of computer technology, optimisation of algorithms,
and improvement of computing power in the future, this method still has the potential to
be employed.

iv. Scaled finite element method The SBFEM has also recently been used for the
wavefield solution. Its technical principle is similar to that of the FEM, but the discretisation
is only processed on the domain boundary, which significantly reduces the required
computation. According to Li et al. (2013b), The modelling concepts mainly include the
following:

i) Separating the variables for the velocity potential and writing the vertical component
as an eigenfunction, such that the three-dimensional Laplace equation is converted
into a two-dimensional Helmholtz equation;

ii) Establishing a local scaled boundary coordinate system at the domain or subdomain
and scaling the studied boundary;

iii) Reformulating the gradient operator with the geometric mapping and expressing the
velocity potential using the shape function and the nodal velocity potential;
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iv) Applying the weighted residual technique with a weighting function and Green’s
theorem to obtain a linear equation system.

Li et al. (2013b) applied the SBFEM to express the wave run-up around multiple
cylinders, and the structural response could also be solved using the SBFEM. Meng and
Zou (2012) developed an SBFEM model for the interaction between waves and a porous
cylinder with arbitrary cross-sections, where a virtual porous cylinder was established to
envelop the studied object. In addition, Liu and Lin (2013) analysed the wave response of
arcuate or circular porous structures based on the SBFEM.

2.2.4 Computational fluid dynamic models

CFD is an interdisciplinary technique that combines fluid mechanics, numerical analysis,
and computer science. It uses discretised mathematical theories to conduct numerical
simulations on various problems of fluid mechanics. Due to the development of computing
science, CFD has been widely applied in the fields of aerospace, automotive, petrochemical,
biomedical, semiconductor design and marine and ocean engineering, among others, and it
compensates for the shortcomings of analytical methods and physical experiments. This
section discusses the basic control equations, discretisation methods, FSI and related
applications in the hydrodynamic simulation of fish cages for CFD models in detail.

I. Governing equations

CFD models are usually based on the Navier-Stokes (N-S) equations to solve the flow field.
The governing equation can also be modified to meet engineering requirements. The action
of the net to the flow field is usually equivalent to a source term added to the governing
equation, including the Reynolds-averaged N-S (RANS) equation and the volume-averaged
RANS (VARANS) equation.

i. RANS equation Under flow conditions with high Reynolds numbers, turbulence
occurs in the wake due to the net, as Bouhoubeiny et al. (2011), Pichot et al. (2009) and
Kim (2012) have proven. When using the laminar flow model, the transition between
the wake and the outer area behind the net is very sharp, which is unreasonable (Chen,
2016). Therefore, it is essential to introduce a turbulence model. The main turbulence
models include the RANS equation simulation, large eddy simulation (LES) and direct
numerical simulation (DNS). First, the principle of the RANS model is to time-average
the fluctuations caused by turbulence, and an eddy-viscosity model was proposed by
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Boussinesq (1903) to simplify the Reynolds stress term. Second, LES directly simulates
large-scale vortices, while small-scale vortices are calculated using the RANS through
filtering. Third, the DNS method directly solves the N-S equation, but only with extremely
small spatial grid lengths and time steps can the detailed turbulence characteristics be
observed and distinguished. Therefore, this method requires extremely high computational
power. Compared with LES and DNS, the RANS method requires less computational
power; therefore, it is the most widely practised in engineering.

The governing equations of RANS for a two-phase incompressible flow, adopting the
volume of fluid (VOF) method, are as follows:

∂γ
∂t +

∂
∂xi

(uiγ) = 0
∂ui
∂x j
= 0

∂ρui
∂t +

∂ρuiu j
∂x j
= −

∂p
∂x j
+ (µ+µt) ∂∂x j

(
∂ui
∂x j
+
∂u j
∂xi

)
+ρgi+S i

, (2.43)

where the phase index γ indicates

1, control volume is filled only with liquid phase,

0, control volume is filled only with gas phase,

0 < γ < 1, interface present,

(2.44)

and S i is the source term due to the effect of the fish cage net.

The turbulence viscosity µt is related to the corresponding turbulence model. At present,
the models commonly applied in engineering are two-equation models. These include
the standard k− ε model and its improved versions, such as the RNG k− ε model and
realisable k−ε model, and the k−ω model and its improved versions, such as the k−ω

SST model. Based on the RANS equation, Chen (2016) compared the differences between
the abovementioned turbulence models and found them not to be apparent. However, Zhao
et al. (2013) believed that the realisable k− ε model is more suitable. Because of the
blocking effect, a strong pressure gradient exists near the fish net.

ii. VARANS equation A fish cage net can also be modelled as a porous medium in
CFD simulation. Nevertheless, Higuera (2015) indicated that the resistance source term
S i cannot fully represent the flows through regular porous materials, since the fluid is a
constraint and able to pass only through the voids left by the solid matrix of the material.
Therefore, the N-S equations require some modifications (averaging process) to account
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for low-porosity materials (0.35 - 0.65). The VARANS equation is described as follows:

∂γ
∂t +

1
τ)

∂γ⟨ui⟩
∂xi
+ 1
τ0

∂γ(1−γ)⟨ui⟩
∂xi

= 0
∂⟨ui⟩
∂x j
= 0

(1+ cm) ∂∂t
ρ⟨ui⟩
τ0
+ 1
τ0
∂
∂x j

ρ⟨ui⟩⟨u j⟩
τ0

= −
∂⟨p⟩ f

∂x j
−g jx j

∂ρ
∂x j

+ 1
τ0
∂
∂x j
µ
(
∂⟨ui⟩
∂x j
+
∂⟨u j⟩
∂xi

)
− 1
τ0
∂
∂x j
ρ
〈
ui′u j′

〉
+S i

. (2.45)

Nakayama and Kuwahara (1999) also introduced the volume averaging operation of
the k−ε and k−ω SST models, but the extra terms generated through volume averaging
need to be calibrated through experimental data to close the system.

The VARANS equation additionally introduces an added mass coefficient cm to involve
the fluid inertial effect for an unsteady flow. Chen (2016) applied the VARANS equation
to simulate the waves and currents passing through a fish net cage, obtaining results that
are similar to experimental data.

II. Discretisation methods

Traditionally employed discretisation methods in CFD mainly include the finite difference
method (FDM), FEM and finite volume method (FVM). In addition, there are some grid-
free-based methods, including the Lattice-Boltzmann method (LBM) and the smooth
particle hydrodynamic (SPH) method.

The FDM approximates the derivatives in differential equations by finite differences
to obtain numerical solutions. Constructing higher-order-difference schemes is relatively
easy, but handling complex unstructured grids is difficult. However, the effect of the fish
cage can be equivalent to the source term added in the governing equations; thus, only
simple rectilinear grids are feasible, as presented by Martin et al. (2021).

The principle of the FVM is to discretise the space into finite cells, convert the volume
integral of the differential equations to the surface integral using Gauss’s divergence
theorem for each control volume (cell) and derive a set of discrete equations through the
discrete scheme. The advantage of the FVM is that it can handle complex unstructured
grids, and the conservation is better because of the integral processing of the governing
equations; however, the higher-order difference schemes are difficult to construct. Some
scholars have used the FVM to simulate the flow field distribution around the fish cage
through the commercial software Fluent (Bi et al., 2014; Patursson et al., 2010; Zhao et al.,
2013) or the open-source code OpenFOAM (Chen, 2016; Cheng et al., 2022).
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Moreover, Tu et al. (2020) adopted the LBM to simulate the flow through the net panel,
in which the net structure is directly modelled as a series of slender cylinders from the
mesoscopic view, and simulated turbulence using LES.

III. Fluid-structure interaction

It is essential to couple the hydrodynamic and structural solvers together, which is usually
a two-way coupling; therefore, FSI algorithms are required.

One of the methods involves equivalating the effect of the net to a porous resistance
source term governed by the quadratic porous flow model in the CFD solver (Bi et al., 2014;
Chen, 2016; Patursson et al., 2010). The coefficients in said model are calibrated using the
Morison equation (Bi et al., 2014; Chen, 2016) or the screen-type method (Patursson et al.,
2010). The porous medium zone representing the net interface is generally divided into
some planar elements on which different flow velocities are distributed. In the algorithm of
Chen (2016), the position of the source term is updated in a static grid instead of a dynamic
grid to represent the movement of the porous zone. Nonetheless, during the deformation of
the net, the cells in adjacent porous zones overlap. To avoid this issue, Cheng et al. (2022)
introduced an improved topological method.

Several other FSI algorithms have also been developed. Yao et al. (2016) proposed
a hybrid-volume method. The source term or reaction force due to a net is equal to the
sum of the products of the weight coefficients and the equivalent hydrodynamic force
vectors of the net mesh bars, in which the weight coefficient of each mesh bar can be
determined by its spatial location. Martin et al. (2021) adopted a Lagrangian–Eulerian
coupling algorithm to directly introduce the structural response into the fluid solver. A
series of Lagrangian points are distributed in the centres of some triangular elements,
which is achieved by splitting the net structure’s macro elements. Then, the external forces
acting on the triangular areas are directly integrated and the momentum loss at each fluid
point is calculated (Eulerian grid).

Furthermore, Devilliers et al. (2016) proposed an algorithm for adaptive grid refinement
near the net interface when interacting with the flow, which efficiently optimises the
computational costs of the CPU and memory.
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2.3 Structural reliability and modelling of a fish cage sys-
tem

2.3.1 Structural reliability

In the design of a fish cage, the most critical procedure is structural reliability to guarantee
the safety of life and property. Under the hydrodynamic action, excessive deformation
or fatigue caused by long-term vibrations will lead to the failure of structural strength.
A reliable quality of materials and facilities can avoid potential safety hazards to the
aquaculture system. Moreover, a key part of sustainable development involves balancing
safety and engineering costs.

I. Floating collar

The floating collar or frame has the function of supporting the cage and generating buoy-
ancy. It is usually made of high-density polyethene, steel or light concrete according to
different applications, such as flexible floating circular rings, hull shape rigid floaters,
and polygon rigid frames. Regarding the floating collar made of elastic high-density
polyethylene (HDPE), its motion can be divided into rigid body motion with six degrees
of freedom and elastic deformation. The rigid body motion of a floating structure includes
three translational motions, namely surge, sway and heave, and three rotational motions,
namely roll, pitch and yaw.

Besides the rigid body motion of floating collars in waves, their elastic deformation
cannot be ignored. Through Euler’s law of motion and elastic beam theory, Dong et al.
(2010) found that a small elastic deformation occurs when the mooring cable is assembled
symmetrically along the incident wave direction. They suggested that the out-of-plane
stiffness should be enhanced to dimmish the deformation. Using the lumped mass method,
Huang et al. (2016) also demonstrated that the maximum deformation of the collar occurred
when the wave propagated in the direction of the mooring line; furthermore, increasing the
cross-section of the collar suppressed the maximum strain, but the effect of its circumfer-
ence was relatively small. Based on a FEM analysis in the frequency domain, the results
suggested that the rigid motion mode would dominate the dynamic response of floating
in head seas, but that the flexibility of the collar would contribute more to the structural
response in oblique seas (Fu and Moan, 2012).

By contrast, the experimental and analytical investigation of Gharechae et al. (2020)
indicated that the upstream floaters in an array had more significant responses than a single
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floater in head sea waves. The shape of the floating ring may affect the wave excitation, but
the added mass, damping and response amplitude operator are not significantly different
according to the analytical solution of Park and Wang (2022). If the cage is under the action
of irregular waves, the motion of the floating collar satisfies the Gaussian distribution
through time-frequency transformation (Qin et al., 2020). Moreover, a comparison between
the experimental and numerical results indicated that the high-order wave effect cannot be
ignored for the motion of the floating ring, especially for phenomena above the third-order
that cannot be explained by the perturbation theory; thus, the N-S equation might be
required (Li et al., 2016).

Bai et al. (2018) studied the fatigue life of the floating collar using FEM models and
probabilistic analysis methods under irregular wave actions. Their results indicated that the
fatigue estimations based on the short-term stress generalized extreme value distribution
and gamma distributions were more accurate than the Rayleigh and Weibull distributions.
Furthermore, long-term distributions are more conservative in estimating the fatigue life of
floater systems.

II. Net chamber

The net structure can be made of nylon wires with or without nodes and steel wires without
nodes. The bending stiffness is usually considered negligible when deformed.

Through the experimental investigation of the geometry of fish pen cages in a uniform
flow by Lader and Enerhaug (2005), a deformed net chamber with increased current
velocities can be distinctly observed in Fig. 2.5. The maximum transverse displacement
of the chamber occurs at the bottom. Adding a bottom sinker weight can suppress the
deformation but will increase the net tension and fluid drag. Furthermore, in an FEM
analysis, Moe et al. (2010) identified the net seam at the bottom of the cage as a potential
hazard area because the internal forces could reach the design capacity.

Different from the quasistatic deformation under a constant flow, the net will generate a
frequency-dependent dynamic response under wave actions. The transverse motion of the
net is much smaller than its inline motion towards wave propagation (Zhao et al., 2008). In
the analytical solution of Su et al. (2015) and Mandal and Sahoo (2016), the maximum
deflection amplitude of the net cylinder occurs near the top restraint. Nevertheless, limited
research exists on how to determine the resonance frequency for the net chamber. It is
also essential to consider the fatigue failure of the net structure when exposed to long-term
wave excitation. The Rayleigh distribution and the two-parameter Weibull distribution can
achieve a reasonable fit for the stress range (Thomassen and Leira, 2012).
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Fig. 2.5 Deformed net chambers with different current velocities and sinker weights (Lader and
Enerhaug, 2005).

According to the aforementioned literature review, a crucial design indicator is to avoid
the excessive volume reduction of the net chamber caused by deformation. Chen et al.
(2021) suggested that increasing the stiffness of the net twine rather than the diameter and
adopting an elliptical cross-section cage and a uniform sinker weight distribution are both
beneficial for suppressing the volume reduction of the cage. Regular cleaning of biofouling
on the net is also necessary. Lader et al. (2008) considered it essential to develop an “early
warning” system for detecting any significant deformation of fish cage nets.

III. Mooring system

The function of a mooring system is to restrict the movement of the cage. Davidson and
Ringwood (2017) presented categories of some commonly employed mooring systems,
which are described as follows and depicted in Fig. 2.6:

i) Spread moorings: catenary mooring, multi-catenary mooring and taut spread moor-
ing;

ii) Single point moorings: catenary anchor leg mooring (CALM) and single anchor leg
mooring (SALM).

The strength of the mooring cable must be guaranteed to avoid cable breakage; there-
fore, it is critical to perform a reliability analysis of the uncertainty quantification system
for the allowable strength (Hou et al., 2019). The numerical case studies of Hou et al.
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Fig. 2.6 Mooring system types: spread moorings: (a) Taut; (b) Taut spread; (c) Catenary; (d)
Multi-catenary; and single point moorings: (e) SALM; (f) CALM; (g) Lazy-S (Davidson and
Ringwood, 2017).

(2018b) indicated that zero initial preload (the mooring cable is in a relaxed state initially)
can effectively improve the fatigue reliability of the mooring cables.

In addition to the excitation caused by the drag and inertial effect of the flow, the
mooring cables can also generate vortex-induced responses. When the vortex release
frequency is close to the natural frequency of the structure, the lock-in phenomenon will
occur, where the structure responds violently. The condition for vortex-included resonance
to occur is usually when the Strouhal number (the reciprocal form of the KC number)
is approximately 0.16 (Chaplin et al., 2005). Moreover, the negligence of the effect of
embedded chains in the seabed may also lead to unreasonable predictions of the static and
dynamic response of the mooring system (Hou et al., 2018a).

IV. Coupling of structural components

The abovementioned review only focused on studies of single structural components
in aquaculture systems. However, the fish cage system is a comprehensive system that
combines the floating collar, net chamber and mooring system, and it is usually designed
as a multi-cage system. The interaction among the structural components is a noteworthy
issue.

The numerical simulations of Li et al. (2013a) indicated that displacements of the
floating collar coupled with a net chamber are obviously different from the results obtained
with only the floater. In particular, the interaction between the floating collar and the
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net has a large impact on the horizontal motions of the system. For frame-type fish net
cages, the existence of frame cylinders leads to a 9.2% increase in the fluid drag coefficient
when the solidity ratio S n > 0.347 (Wang et al., 2023). The maximum local stress occurs
where the net connects to the floater; thus, this is a critical element of the structural design
of fish cages (Lader et al., 2008). The gravity cage system exhibits small responses to
high frequencies, which is characteristic of highly damped systems (Xu et al., 2011).
Furthermore, the stiffness of the heave, roll and pitch provided by the mooring system is
small compared with the hydrostatic stiffness, but the coupling stiffness of surge–pitch or
sway–roll is considerable when the weight of the mooring cable or the wave drift force is
not negligible (Kim et al., 2013).

In multi-cage systems, each cage is not in an isolated state but rather has a mutual
interaction. For an array of net cages under wave actions, the maximum response does
not necessarily occur in the upstream direction, and their frequent rolling and swaying
will cause the mooring tension to be redistributed (Zhang et al., 2021). The numerical
simulations of Xu et al. (2013a,b) have revealed that the dynamic response of each cage
has a significant phase difference, and that the mooring tension and cage volume reduction
of multiple cage systems is much greater than those in single cage systems and is related
to the number of cages. In most cases, two adjacent ropes do not pull the cage together
because the mooring force in one is usually much greater than that in the other; thus, two
adjacent ropes are not always effective at reducing stress concentrations (Liu et al., 2022).

2.3.2 Modelling of fish cages

I. Floating collar

Dong et al. (2010) regarded the circular floating collar as a slender curved beam and used
Euler’s law of motion and elastic beam theory to solve its rigid displacement and elastic
deformation, respectively. The elastic deformation solutions could be expanded in a series
of eigenmodes. For such initial value problems, the Runge–Kutta method is a popular
time-discretised method. However, the mechanism of damping is not negligible for the
initial vibration state of structures. Zhao et al. (2015) introduced a viscous damping model
assuming the structure to have a low velocity. They found that the undamped case was not
consistent with the realistic system, and that the structural deformation tended to be the
same for arbitrarily different damping rates when the time was sufficiently long. Huang
et al. (2016) established a discretised lumped mass model to obtain the dynamic response
of the floating collar. A four-node shell element was used to model the floating collar to
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simulate a more realistic stress distribution in the FEM model of Zhao et al. (2019a). The
Morison equation has been applied for the hydrodynamic load evaluation in these studies.

Notably, the wave scattering effect due to the structure is neglected. Fu and Moan
(2012) established a coupled model connecting the FEM model of the cage collar and the
BEM model of the wave based on potential flow theory. Li et al. (2016) and Gharechae
et al. (2020) have coupled the Euler–Bernoulli curved beam theory with the wave field
solutions in the BEM, only considering the vertical motion of the collar, but the latter
directly provided the analytical solutions. Additionally, Park and Wang (2022) derived the
analytical solution of rigid body motions for a floating ring with arbitrary shapes in waves.

II. Net chamber

The discretised models of fish cage nets mainly include the lumped massed model (Bi
et al., 2014; Chen et al., 2021; Li et al., 2006; Martin et al., 2021; Yao et al., 2016; Zhao
et al., 2008) and the truss element model (Kristiansen and Faltinsen, 2015; Moe et al.,
2010; Tsukrov et al., 2003). The former equates the knots and twines of the net as several
massed nodes connected by massless springs. The latter are directly analysed through the
FEM. In the commercial software AquaSim, a four-node membrane element is adopted to
model the net (Aquastructures, 2022). These discretised models are usually based on time
domain analysis. Nevertheless, for these discretised approaches, a simplification of the
calculation model relative to the original net pattern is usually necessary to avoid excessive
computations. In addition, this type of structural modelling is often coupled with CFD
models to achieve FSI; thus, the amount of computation will also increase.

Some researchers (Mandal and Sahoo, 2016; Selvan et al., 2021; Su et al., 2015)
have also adopted continuum vibration equations to describe the net motion in analytical
solutions, such as the lateral deflection equations of strings or elastic beams or the mem-
brane vibration equation. By analysing the motion and elastic constitutive relationship of
the micro-element segment, the governing equations of the structural displacement can
be derived. This structural modelling is commonly coupled with potential flow models
based on eigenfunction expansion methods to achieve FSI. Because of the application
of frequency domain analysis, the response of the system can be predicted simply and
quickly. However, this approach is based on some unreasonable assumptions: First, the
cross-section of the cage retains a constant circular shape, and second, the stress variation
due to structural deformation is assumed to be ignored. Therefore, modelling fish cage
nets with the continuum model still requires a much additional theoretical research.
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In addition to the numerical model, machine learning is also an effective and accurate
approach for predicting the dynamic behaviour of aquaculture cage systems, such as the
application of artificial neural networks by Zhao et al. (2019b).

III. Mooring system

In most analyses of floating structures, the mooring system is equivalent to linear springs,
which are simple to be included in the rigid body motion equation of the floating structure
as constant stiffnesses. Liu et al. (2021) and Selvan et al. (2021) tried to calculated the
mooring restoring forces on fish cages as provided by springs of constant stiffness along
the transverse direction in their analytical solutions as well.

Another method is to directly model the mooring cables in the FEM, where the drag
forces induced by waves and currents and the motions of the mooring lines are considered,
and the tension information of the mooring line is directly given (Kim et al., 2013). By
comparing the two methods, Kim et al. (2013) demonstrated that the FEM is more realistic
because the complex nonlinear behaviour can be solved, but this is time-consuming.

2.4 Summary and research gaps

2.4.1 Summary of the literature review

The findings of the literature review presented in this chapter can be summarised as follows:

• The actions of currents and waves are crucial parameters in the design of a fish cage
system and can cause complex hydrodynamic phenomena;

• In hydroelastic analysis, the perturbation effect on the flow field due to the presence
of the fish cage and its motion is significant;

• Approaches to hydrodynamic analysis for fish cages mainly include empirical meth-
ods (the Morison equation and screen-type method), potential flow models and CFD
models; the net structure is usually equivalent to a porous medium in the last two
models;

• Lumped mass models, FEM models and continuum vibration equations are com-
monly used for the structural modelling of fish cage systems.
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2.4.2 Existing research gaps

The literature review has revealed that research on offshore fish cages is still in its infancy.
Flexible HDPE fish cages exposed to high-energy environments might not provide suffi-
cient strength to resist environmental loads. High-strength rigid cages are considered to
have excellent development potential and can achieve higher incoming value due to the
tremendous breeding capacity that they provided; however, the expensive manufacturing
costs may prevent some companies from choosing them as the optimal solutions. Therefore,
the conceptual design of an affordable fish cage is an critical part of feasibility studies of
offshore fish farming. On the other hand, although the developed hydroelastic analysis
method based on traditional numerical techniques can achieve excellent approximation,
the computational costs are still considerable, which makes it impractical to employ for
a full-scale fish cage. Advanced calculation models are one of the research priorities for
simulating the hydroelastic behaviours of fish cages. From the perspective of the long-term
development of novel offshore fish cages, the conceptual design and relevant studies on the-
ories, calculation models and experiments related to hydroelastic performance are required.
Doing so will provide a wealth of technical reserves for the further engineering design,
product construction and practical application of the new marine aquaculture platforms of
the future.

From the aforementioned two points of view, the following research gaps and questions
can be summarised:

• Which types of aquacultural systems are suitable for offshore fish farming?

• Which techniques can be improved to more efficiently predict the hydroelastic
behaviours of net cages?

• In terms of the simulations of net cages in waves, the two-way coupling of fluids and
structures is less well understood and difficult to be incorporated into the models.

• What are the characteristics of the wave field distribution in presence of a fish farm?

• What is the influence of hydrodynamic and structural conditions on the wave re-
sponses of net cages?

The aforementioned research gaps and questions indicate that the theoretical mecha-
nism of the hydroelastic interaction between waves and fish net cages still requires further
work; furthermore, innovative analysis methods are necessary for the engineering practice
of offshore fish farming. This will lead to subsequent Ph.D. research.
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Chapter 3

Research Question and Methodologies

3.1 Research question

The research background and literature review emphasise the importance of developing
the offshore fish cage system and the relevant studies and technologies to investigate the
hydroelastic characteristics of such marine structures. The research scope of this thesis
focuses on the hydroelastic interaction between waves and flexible net chambers. For
fish farms exposed to high-energy environments, waves are an important environmental
load. Although fluids in the real ocean environment exhibit irregular oscillations, irregular
waves can usually be decomposed into the superposition of infinite monochromatic waves.
Also, diffracted and radiated waves caused by the cages can cause additional variations in
the wavefield around the fish farm. The determination of the wave actions on structures
can guarantee the robustness of offshore aquaculture systems and, ultimately, minimise
engineering risks. Additionally, analysis of the distribution of wave amplitudes around the
cages prevents fish damage caused by strong fluid oscillations and creates a favourable
low-energy environment for fish survival. As a result, an understanding of this phenomenon
is essential to both theoretical and engineering practice.

Therefore, this Ph.D. thesis proposes to answer the following question:
“Under the incidence of an array of monochromatic waves in extreme conditions, what are
the hydroelastic behaviours of the offshore open-net fish cage?”.
Based on this broad research question, several specific research questions are proposed:

• What are the characteristics of the wavefield distributions around a single fish cage
or a fish cage array?
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• What are the dominant factors that determine the wave response of net cages (such
as hydrodynamic loads, structural motions, etc.), and what correlations may manifest
between them?

• How do the elastic deformations of cages affect the hydrodynamic characteristics of
waves?

3.2 Methodologies

The research methodologies involve analytical derivation and verification of coupled
hydrodynamic and elasticity models, which are further combined with wave interference
interaction theory. Compared to traditional numerical methods, analytical solutions limit
intensive numerical computation by directly determining the smooth solution of the studied
problem, but some complex nonlinear problems do not have a particular analytical form
in real engineering problems. Therefore, some reasonable assumptions are essential. In
the present study, the development of the theoretical models applies the assumptions of
small-amplitude wave theory, Darcy’s law and linear elasticity; these assumptions are
achieved by neglecting the higher-order terms in the Taylor series of the relevant physical
quantities.

The purpose of this model is to predict the wavefield distribution surrounding open-net
fish cages and their corresponding dynamic behaviours. Specifically, the main activities
conducted to answer the research question and achieve the research objectives are divided
into three study elements, I, II and III, in the subsequent three chapters, respectively. A
detailed methodological framework is included in Fig. 3.1. Furthermore, this chapter
contains some important analytical techniques used for the mathematical modelling of
each study element.

3.2.1 Study I: A theoretical framework for the hydroelastic interac-
tion between waves and submersible flexible fish cages

The purpose of Study I is to establish a theoretical framework for the analytical solution
to wave-cage interaction. Therefore, it is necessary to understand the mechanisms and
governing equations in this physical problem and the corresponding approach to solutions.
A schematic diagram of the preliminary theoretical framework is presented in Fig. 3.2. The
following sections briefly describe the tasks required for this stage; a detailed discussion is
presented in Chapter 4.
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Fig. 3.1 Methodological framework for the existing research.

Stage 1.1: Governing equation and boundary condition of the fluid domain

Assuming that fluid is inviscid, irrotational and incompressible, the flow velocity can be
expressed as a gradient of the velocity potential, which satisfies the Laplace equation. In
small-amplitude wave theory, the free surface satisfies the linearised kinematic boundary
conditions and dynamic conditions. Due to the assumption that the fluid is inviscid, slip-
conditions are applied to the seabed. The first-order scattered wave potential satisfies the
Sommerfeld (1949) radiation condition. At the interface of the cage, in addition to the
continuity of flow velocity, the kinematic boundary conditions combined with the porous
medium model must also be satisfied, for which the flow velocity is equal to the penetrated
flow velocity plus the movement speed of the cage interface.

Stage 1.2: Governing equation and boundary condition of the structural domain

From the analytical solutions developed by Su et al. (2015) and Mandal and Sahoo (2016),
the transverse deflection of the net chamber can be approximately described by the vibration
equation of a one-dimensional string. Next consider the constraint condition of the net
chamber: its top end is tugged by the mooring load, wherein the mooring system is
equivalent to a linear spring, and the lateral traction is free at the bottom end of the net
chamber.
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Fig. 3.2 Theoretical framework of the simulation model in Study I.

Stage 1.3: Method of solutions

Both the Laplace equation and the one-dimensional string vibration equation are linear
differential equations. According to the superposition principle, its general solution can
be expanded to a series of eigenfunctions in which the eigenvalues can be determined
by the dispersion relation. To obtain the closed-form solution to this physical problem,
a system of linear algebraic equations corresponding to the unknown constants in the
general solution may be obtained by substituting the general solution into the boundary
conditions and applying a east squared approximation. In the derivation, complex analysis
is an effective tool to solve fluctuation problems.

Stage 1.4: Analysis of results

The aforementioned governing equations can be solved to determine the velocity potential
of the fluid domain and the transverse displacement of the fish cage. Convergence studies
and model validation are completed to demonstrate the reasonableness of the solution.
The free water surface elevation and dynamic pressure can be calculated according to
the linearised Bernoulli equation, and the wave force and overturning moment acting
on the cage are obtained by integrating the pressure drops on the cage interface. The
characteristics of the parameters that significantly affect the wave forces and overturning
moments acting on the cage are explained by parametric studies.
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3.2.2 Study II: Innovative analytical schemes by practising the shell-
membrane theory in modelling net chambers

In the first study phase, the net cage is over-simplified as a string, but it usually deforms
differently in front and back. To overcome this issue, the purpose of Study II is to determine
a more appropriate governing equation to describe the motions of the cage and provide more
advanced solutions to the structural domain and the fluid-structure interaction. Chapter 5
presents a detailed discussion of these methods.

Stage 2.1: Governing equation and boundary condition for shell structures in the
membrane theory

Fish cage nets are generally considered unable to provide bending resistance, so equations
of their motion and constitutive relations can be approximately described by the membrane
theory of thin shells proposed by Flügge (1973). The displacement of a cylindrical shell
in the cylindrical coordinate system can be decomposed into the axial displacement,
circumferential displacement and radial displacement, and the radial motion of the shell
can be considered a forced vibration with the wave pressure acting as the excitation
load. By substituting the constitutive relation into the motion equation, one obtains the
governing equations for the displacements of the shell. The mathematical expression of
the edge constraint conditions for cylindrical shells can be found in Belubekyan et al.
(2017), including the traction-free condition, clamped condition, sliding contact constraint
and Navier constraint. The traction-free condition and clamped condition are normally
applicable to the restrained state at the edge of the net chamber.

Stage 2.2: Method of solutions to the structural domain and fluid-structure interaction

Under the excitation vibrations of waves, the governing equations of the shell displacements
are a set of inhomogeneous linear partial differential equations (PDEs). If the variables are
separated, these PDEs can be transformed into a system of ordinary differential equations
(ODEs) with respect to the axial variables, and the corresponding general solution can be
derived by determining the roots of the characteristic equation belonging to these ODEs.

The particular solution of these displacement components may be derived by intro-
ducing the boundary value conditions. For FSI, only the radial displacement of the shell
affects the flow condition on the cage interface due to the assumption that the fluid is
inviscid in the potential flow theory. Therefore, by repeating the technique used in Study I,
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Fig. 3.3 Theoretical framework of the simulation model in Study II.

a closed-form solution to the updated model can be obtained. The modified theoretical
framework is presented in Fig. 3.3.

Stage 2.3: Analysis of results

The results analysis of this study phase is similar to that of Study I. However, a more
realistic dynamic response of the cage structure may be simulated. By contour plotting
the pressure drop and structural displacement, one can identify the area with critical wave
responses on the cage surface.

3.2.3 Study III: Theoretical extensions to the wave interference effects
in the multi-cage system

The objective of Study III is to extend the developed model to a more generalisable tool
for predicting the hydroelastic behaviours of an array of fish cages with arbitrary numbers,
dimensions and layouts. The superposition of scattered waves produced by each individual
cage is the wave interference effect, which is the research focus in the third study phase.
Limited literature has discussed the mean wave drift load acting on the fish cage, so this
phenomenon is also explored at this stage. A detailed description of these methods can be
found in Chapter 6.
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Fig. 3.4 Theoretical framework of the simulation model in Study III.

Stage 3.1: Application of the Kagemoto and Yue (1986) interaction theory

The Kagemoto and Yue (1986) interaction theory can provide an exact solution to describe
the wavefield around multiple columnar structures. In the local coordinates of each cage,
the scattering potential generated by that cage is written as an eigenfunction expansion,
as in Studies II and III, and the coordinates can be transformed into the local coordinate
systems belonging to other cages by employing Graf’s addition theorem.

Stage 3.2: Derivation of the coupled coefficient matrix for all cages

A series of fish cages numbered from j = 1, ..., NC (number of cages) is considered. The
analytical form of the nearby velocity potential is expressed in the local coordinate system
of the kth cage according to Stage 3.1. By substituting the solution of the wavefield and
structural displacement, which can be calculated directly using the developed FSI solver
in Study II, into the kinematic boundary conditions of the cage interface, linear algebraic
equations for the unknown constants in the general solution for this cage can be derived.
The eventual coupled matrix system is obtained by simultaneously assembling the linear
algebraic equations for all cages. The theoretical framework of Study III is illustrated in
Fig. 3.4.
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Stage 3.3: Analysis of results

By contour plotting the wave amplitude distribution around the fish cage array, the char-
acteristics of the wave interference effect can be effectively identified. However, the
second-order wave potential does not contribute to the mean wave drift effect (Faltin-
sen, 1993). Therefore, by substituting the current first-order solution into the nonlinear
Bernoulli equation and performing time-averaged operations, the mean wave drift load
can be calculated. Additionally, some parametric studies on the wave forces acting on
the cages in the array are discussed under the varied parameters that determine the wave
interference phenomena. These findings are compared with the results of the single cage
case.

According to the theoretical frameworks in the three study elements, the numerical
execution flow chart for the eventual simulation model used to analyse the wave-net cage
interaction is presented in Fig. 3.5.
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Fig. 3.5 Numerical execution flow chart for the eventual simulation model to analyse the wave-net
cage interaction.
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A semi-analytical model for studying hydroelastic behaviour
of a cylindrical net cage under wave action

Abstract: In the present study, a semi-analytical model based on the small-amplitude wave
theory is developed to describe the wave fields around a single gravity-type cylindrical open
fish net cage. The cage may be submerged to different depths below the free-water surface.
The fish cage net is modelled as a flexible porous membrane, and the deflection of the net
chamber is expressed by the transverse vibration equation of strings. The velocity potential
is expanded in the form of the Fourier-Bessel series, and the unknown coefficients in these
series are determined from matching the boundary conditions and the least squares method.
The number of terms for the series solution to be used is determined from convergence
studies. The model results exhibit significant hydroelastic characteristics of the net cages,
including the distribution properties of wave surface, pressure drop at the net interface,
structural deflection and wave loading along the cage height. In addition, the relationships
between wave forces on the net cage with hydrodynamic and structural parameters are also
revealed. The findings presented herein should be useful to engineers who are designing
fish cage systems.

Keywords: Fish net cage; Hydroelastic analysis; Potential flow model; Wave scatter-
ing; Fourier-Bessel series; Porous medium theory.
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4.1 Introduction

Fish farming not only provides an important protein supply for humans but also brings
huge economic benefits. Average data from 2015 to 2017 indicates that fish products
provide at least 20% of the animal protein intake of 3.3 billion people (FAO, 2020b), and
aquatic products accounted for about 46.4% of the food and agriculture production in
2017 (Zhou, 2019). In addition, the aquaculture industry of Australia is in a stage of rapid
development and reached an annual output value of AUD 3.3 billion in 2020 (Chen et al.,
2021). In order to guarantee a stable output, the fishing cage system requires excellent
reliability under environmental loads, such as waves and currents. Therefore, suitable
modelling and studies on the dynamic response of the net cage to waves are crucial.

In many studies, the dynamic behaviour of fish cage nets is simulated by numerical
models, for example, the bar element model (Tsukrov et al., 2003; Zhan et al., 2006) or the
mass-spring model (Li et al., 2006; Zhao et al., 2008), in which the hydrodynamic force
on each element is estimated by the Morison equation or the screen-type method proposed
by Kristiansen and Faltinsen (2012). However, these models neglect the interferences of
the structure and its motions on the flow field. For this reason, some researchers, exampli
gratia, Bi et al. (2014) and Martin et al. (2021), introduced CFD techniques to achieve FSI,
but this requires tremendous computational time. In the numerical experiment of Martin
et al. (2021), it is reported that the simulation of a semi-submersible cage in irregular
waves by FSI analysis takes around 185 h for 300 s of simulation time on 64 cores (Intel
Sandy Bridge) with 2.6 Ghz and 2 GB memory per core. This is not feasible to model a
full-scale fish net cage in detail in engineering practice. If some characteristics of the wave
passing through the net can be simplified and solved analytically, then the computational
time can be reduced significantly.

Usually, in theoretical analysis that allows for interaction between net cage and waves,
the wave field is described by the linear potential flow theory, and the fish cage net is
modelled as a porous medium membrane. The porous wavemaker theory is proposed
by Chwang (1983) to analyse the water wave generated by the harmonic oscillation of
a vertical porous barrier, where the porous flow is described by Darcy’s law. With the
eigenfunction expansion and matching the boundary conditions, the particular solution
of the velocity potential can be derived for the scattering issue of small-amplitude waves
passing through permeable barriers in Yu and Chwang (1994) and Lee and Chwang (2000).
In terms of the interference effects among multiple rigid porous cylinders in waves, the
scattering potential of each body in different local coordinates can be transformed by
Graf’s addition theorem in Sankarbabu et al. (2007) and Park et al. (2010). Furthermore, if
waves interact with flexible structures, the motion of the structure can be approximately
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described by the vibration equation of the continuum according to Abul-Azm and Williams
(1987), Yip et al. (2002) and Behera and Sahoo (2015).

Recently, some studies have adopted the aforementioned theoretical approaches to
analyse the interaction between waves and net cages. The transverse displacement of the
circular cage is assumed to be governed by the vibration equation of the elastic beam in
Mandal et al. (2013) and Su et al. (2015), and the deflection of the horizontal net plate can
be described by the two-dimensional membrane vibration equation, which was introduced
by Mandal and Sahoo (2016). Selvan et al. (2021) extended the theory of Mandal and
Sahoo (2016) to the interference effect of multiple cages. Furthermore, Guo et al. (2020)
present a detailed review about the mathematical modelling of wave interaction with
flexible net-type structures.

Moreover, a few researchers employed numerical techniques based on the linear
potential flow theory to investigate the wave-structure interaction problems. The scaled
boundary finite element model is applied to investigate the interaction mechanism between
waves and pile groups with arbitrary spatial layouts and cross-sections in Li et al. (2013b).
A hybrid method is adopted to evaluate the wave force acting on a cube net cage in Ito et al.
(2014), where the velocity potential of the far-field wave is expressed in the Fourier-Bessel
series, and the ambient waves are solved by Green’s theorem, i.e., the boundary element
method (BEM). In Liu et al. (2020), the BEM and Morison equation are combined to
investigate the hydrodynamic characteristics of a semi-submersible aquaculture facility.
The numerical and experimental comparisons of Ito et al. (2014) and Liu et al. (2020) both
show acceptable agreement.

Based on the above literature review, several research gaps are identified. Firstly, when
evaluating hydrodynamic loads with empirical models (Morison equations or screen-type
methods), the wave field distribution induced by diffraction and radiation effects around the
net cage has to be determined. Secondly, fish net cages may be designed with submerged
capabilities to avoid strong surface waves. However, the above analytical models from
Su et al. (2015), Mandal and Sahoo (2016) and Selvan et al. (2021) do not consider this
scenario. Thirdly, for the net cage exposed to a wave field, knowledge about its hydroelastic
behaviours is scarce. Therefore, it is essential to establish an analytical model to predict
some key factors that determine the wave responses of fish net cages.

In the present study, the interactions between waves and submersible cylindrical fish
net cage are approximated by a semi-analytical solution based on linear hydroelastic
theory. The characteristics of the cage response to wave (free water surface, pressure,
hydrodynamic load, structural motion, etc.) are to be determined. This information is
crucial for the design and application of fish cages. The linear model has advantages
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in the derivation of analytical solutions even if the boundary value problem is relatively
complicated. The potential flow theory is also convenient for dealing with the domain
with an infinite boundary, which means that an extremely large wave field is feasible to
be analysed. The paper is arranged as follows: Section 4.2 presents the assumptions,
modelling, governing equation and boundary conditions for the wave-cage interaction
problem. In Section 4.3, the method of solution for the governing equations and boundary
value problems is elaborated. Section 4.4 presents the convergence studies and model
validation. Section 4.5 presents the calculated results and explains the hydroelastic be-
haviour of the net cage under wave action, and parametric studies are established to reveal
the relationship between the wave force on the net cage and various hydrodynamic and
structural parameters. Finally, brief conclusions are given in Section 4.6.

4.2 Problem definition, assumption and theoretical for-
mulation

In this study, a cylindrical net cage is considered as shown in Fig. 4.1, and it is convenient
to describe the physical problem in a cylindrical coordinate system (r, θ, z). A small-
amplitude wave propagates along the direction of θ = 0 with a circular frequency ω and a
wave height H. The mean water level is at z = 0, and the cage is submerged in a finite water
depth of h. The central axis of the cage with a height of d2 is located at the position r = 0,
and its top end can be submerged below the mean water level in d1. In addition, the top
end is constrained by mooring systems at z = −d1, whilst the bottom end of z = −(d1+d2)
is free.

The flow domain may be divided into two zones: Region 1 (r > a, −h < z < 0) is the
external region outside the net cage, while Region 2 (r < a, −h< z< 0) is the area within the
circular net chamber. For the structural domain, the notations S net and S gap represent the
net region of −(d1+d2) ≤ z ≤ d1 and the gap portions of −d1 < z ≤ 0∪−h ≤ z < −(d1+d2),
respectively.

The problem at hand is to determine the hydroelastic behaviour of the submerged
cylindrical net cage under wave action.

4.2.1 Governing equations

Assuming that the fluid is incompressible, irrotational and inviscid, Φ1 andΦ2 represent the
velocity potentials in Regions 1 and 2, respectively, and the velocity potential Φ j(r, θ,z, t)
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Fig. 4.1 A sketch of a cylindrical net cage submerged in a finite water depth: (a) Plan view; (b)
Isometric view.

( j = 1,2) can be written as
Φ j = Re

[
φ j (r, θ,z)e−iωt

]
, (4.1)

where φ j is the spatial component of the velocity potential, and it is governed by the
Laplace equation in the cylindrical coordinate:

∂2φ j

∂r
+

1
r
∂φ j

∂r
+

1
r2

∂2φ j

∂θ
+
∂2φ j

∂z2 = 0. (4.2)

In addition, φ j can be represented as a superposition of the incident wave component φI

and the scattered (diffraction and radiation) wave component φS
j , i.e.:

φ j = φ
I +φS

j . (4.3)

4.2.2 Boundary conditions

At the free water surface z = ξ, the linearised kinematic free surface (KFSBC) boundary
condition satisfies

∂Φ j

∂z
=
∂ξ

∂t
at z = 0, (4.4)

and the linearised dynamic free surface boundary condition (DFSBC) is

ξ = −
1
g
∂Φ j

∂t
at z = 0. (4.5)
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Fig. 4.2 The fish cage net is modelled as a porous membrane.

By combining Eqs. (4.4) and (4.5), the boundary condition at the mean water level is

∂φ j

∂z
−
ω2

g
φ j = 0 at z = 0, (4.6)

and the slippery boundary condition on the seabed is given by

∂φ j

∂z
= 0 at z = −h. (4.7)

Furthermore, the scattered potential component φS
j satisfies the Sommerfeld (1949) radia-

tion condition when r approaches infinity, i.e.:

lim
r→∞

√
r

∂φS
1

∂r
− iκ0φS

1

 = 0, (4.8)

where κ0 is the incident wavenumber.

As shown in Fig. 4.2, the fish cage net is modelled as a porous membrane, so the
penetration flow through the cage interface satisfies the linearised kinematic condition:

∂φ j

∂r
= iτ (φ2−φ1)− iωηcosθ at r = a and z ∈ S net, (4.9)

in which η is the spatial component of the transverse deflection of the cage along the
incident direction of the wave, and τ is the porous effect parameter of the net that is
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expressed by an empirical formula given by Ito et al. (2014):

τ = (1+ iτi)τr and τr =
κ0
2π
×

(27.73
/
ε+469.0)τ20

1+ (0.5510−0.01998
/
ε)τ0

, (4.10)

where τ0 is the opening ratio of the net, i.e., the percentage of void space in the net, ε
is the incident wave slope κ0H/2, and the imaginary part of τ represents the fluid inertia
effect. A high Keulegan–Carpenter number indicates a minor fluid inertia effect compared
to the fluid drag effect. In Zhao et al. (2008), for the net twine with a diameter of a few
millimetres, its KC (Keulegan–Carpenter) number is 160 to 350 based on the laboratory
tests, and the wave-induced inertia force is considered negligible compared to its drag
force on the fish cage net. In the real sea condition, higher wave height and wave periods
also mean a greater KC number. Currently, there is no appropriate formula of τi given
for the cylindrical net cage; therefore, it is taken as 0 if there is no special explanation.
Nevertheless, the influence of τi is still discussed in Section 6. In addition, the continuity
of the normal velocity and pressure of the flow at the interface between Regions 1 and 2
requires

∂φ1

∂r
=
∂φ2

∂r
at r = a and −h < z < 0, (4.11)

φ1 = φ2 at r = a and z ∈ S gap. (4.12)

On the other hand, it is assumed that the cross-section of the cage maintains its circular
shape under wave action if the cage is imposed a great axial tension and has a small
deformation relative to its overall size. Liu et al. (2021) showed a deformed net cage
simulated by the finite element method (FEM) using truss elements, and it is observed
that the cage approximately maintains a circular cross-section. Therefore, the transverse
deflection of the cage is ζ = Re[η(z)e−iωt], and the transverse vibration equation of the
string to describe the complex amplitude η is given by Mandal and Sahoo (2016):

d2η

dz2 +
msω

2

Q
η = −

aiωρ
Q

∫ 2π

0
(φ1−φ2)cos(π− θ)dθ, (4.13)

in which Q is the axial uniform tensile force in the net, ms is the uniform mass of the net
per unit length, and ρ is the water density. In Liu et al. (2021), a comparison between the
analytical model based on Eq. (4.13) and the FEM simulation for the cylindrical net cage
illustrates acceptable errors.

For the edge restraint condition of the net chamber, its top end is assumed to be
constrained by the mooring systems according to Liu et al. (2021), and there is no transverse
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traction at the bottom end, i.e.:

dη
dz
= 1/Qksη at z = −d1,

dη
dz
= 0 at z = −(d1+d2),

(4.14)

where ks is the spring constant of the mooring cables.

4.3 Derivation of the solutions

In view of the governing equation, Eq. (4.2), and the boundary conditions, Eqs. (4.6), (4.7)
and (4.8), the solution of φ1 is sought in the form

φ1 = φ
I +φS

1 , (4.15)

where

φI =

∞∑
m=0

−
igH
2ω

cosh[κ0 (z+h)]
cosh(κ0h)

µmJm (κ0r)cos(mθ), (4.16)

µm =

1, m = 0

2im, m > 0
, (4.17)

φS
1 =

∞∑
m=0

∞∑
n=0

AmnR1
m(κnr) fn(z)cos(mθ), (4.18)

R1
m(κnr) =


Hm(κnr)
H′m(κna)

, n = 0
Km(κnr)
K′m(κna)

, n > 0
, (4.19)

fn (z) =


cosh[κn(z+h)]

cosh(κnh) , n = 0
cos[κn(z+h)]

cos(κnh) , n > 0
. (4.20)

Similarly, according to the governing equation, Eq. (4.2), and the boundary conditions,
Eqs. (4.6) and (4.7), the general solution of φ2 is

φ2 = φ
I +φS

2 , (4.21)

where

φS
2 =

∞∑
m=0

∞∑
n=0

BmnR2
m(κnr) fn(z)cos(mθ), (4.22)
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R2
m(κnr) =


Jm(κnr)
J′m(κna)

, n = 0
Im(κnr)
I′m(κna)

, n > 0
. (4.23)

In abovementioned equations, κns are the real roots of the following dispersion relations:

ω2 =

gκn tanh(κnh) , n = 0

−gκn tan(κnh) , n > 0
, (4.24)

Amn and Bmn are the unknown constants, Jm is the first kind of Bessel function, Hm is the
first kind of Hankel function, Im is the first kind of modified Bessel function, and Km is the
second kind of modified Bessel function, where the subscript m is the order of the Bessel
function.

By substituting Eqs. (4.16), (4.18) and (4.22) into the boundary condition Eq. (4.11)
and applying the orthogonality operation of cosh[κn(z+h)], cos(κnh), n = 0, 1, 2 ... over
−h ≤ z ≤ 0 and cos(mθ), m = 0, 1, 2 ... over 0 ≤ θ ≤ 2π, the unknown constants in Eqs.
(4.18) and (4.22) satisfy

Amn = Bmn. (4.25)

Therefore, one can write

∆φ = φ1−φ2 =

∞∑
m=0

∞∑
n=0

AmnXmn fn(z)cos(mθ) at r = a, (4.26)

where
Xmn = R1

m (κna)−R2
m (κna) . (4.27)

By substituting Eq. (4.26) into Eq. (4.13) and noting the orthogonality of cos(mθ), m

= 0, 1, 2 ... over 0 ≤ θ ≤ 2π, Eq. (4.13) might be rewritten as

d2η

dz2 +α1η = α2

∞∑
n=0

A1nX1n fn(z), (4.28)

where

α1 = msω
2
/
Q and α2 = πaiωρ

/
Q. (4.29)

Therefore, the general solution of η (z) is

η (z) =
2∑

b=1

Cbeqbz+

∞∑
n=0

A1nFn fn(z), (4.30)

64



4.3 Derivation of the solutions

in which

Fn =


α2X1n
α1+κ

2
n
, n = 0

α2X1n
α1−κ

2
n
, n > 0

, (4.31)

and qbs are the roots of the characteristic equation of Eq. (4.28), where they are given by

q1 = iω

√
ms

/
Q and q2 = −iω

√
ms

/
Q. (4.32)

By substituting Eq. (4.30) into the boundary condition, Eq. (4.14), the constant Cbs are
acquired through

∑2
b=1 Cb(ks−qbQ)e−qbd1 +

∑∞
n=0 A1n[ksFn fn (−d1)−QFn f

′

n(−d1)] = 0∑2
b=1 Cbqbe−qb(d1+d2)+

∑∞
n=0 A1nFn f

′

n [− (d1+d2)] = 0
. (4.33)

For the net portion z ∈ S net, substituting Eqs. (4.16), (4.18) and (4.26) into Eq. (4.9)
and invoking the orthogonality of cos(mθ) again, one obtains,
when m , 1,

∞∑
n=0

Amnκn fn (z)+ iτ
∞∑

n=0

AmnXmn fn (z)−
igHκ0

2ω
cosh[κ0 (z+h)]

cosh(κ0h)
µmJ

′

m (κ0a) = 0, (4.34)

when m = 1,

∞∑
n=0

A1nkn fn (z)+ iτ
∞∑

n=0

A1nX1n fn (z)+ iω
∞∑

n=0

A1nFn fn (z)

−
igHκ0

2ω
cosh[κ0 (z+h)]

cosh(κ0h)
µmJ

′

m (κ0a)+ iω
2∑

j=1

Cbeqbz = 0.

(4.35)

For the gap portion z ∈ S gap, substituting Eq. (4.26) into Eq. (4.12) and using the
orthogonality of cos(mθ) yields

∞∑
n=0

AmnXmn fn(z) = 0. (4.36)

As a result, a system of equations can be obtained from Eqs. (4.34), (4.35) and (4.36):

S m (z) =
∞∑

n=0

Amnϵmn (z)+λm (z) = 0, (4.37)
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where when m , 1,

ϵmn (z) =

(κn+ iτXmn) fn (z) , z ∈ S net

Xmn fn (z) , z ∈ S gap

, (4.38)

λm (z) =

−
igHκ0

2ω
cosh[κ0(z+h)]

cosh(κ0h) µmJ
′

m (κ0a) , z ∈ S net

0, z ∈ S gap

, (4.39)

and when m = 1,

ϵmn (z) =

(kn+ iτXmn+ iωFn) fn (z) , z ∈ S net

Xmn fn (z) , z ∈ S gap

, (4.40)

λm (z) =

−
igHκ0

2ω
cosh[κ0(z+h)]

cosh(κ0h) µmJ
′

m (κ0a)+ iω
∑2

j=1 Cbeqbz, z ∈ S net

0, z ∈ S gap

. (4.41)

Truncating the infinite series after Nth terms in Eq. (4.37) yields

S m (z) =
N∑

n=0

Amnϵmn (z)+λm (z) = 0. (4.42)

By manipulating the least-squares approximation for Eq. (4.42), one obtains∫ 0

−h
|S m(z)|2 dz =min⇒

∫ 0

−h
S ∗m
∂S (z)
∂Amn

dz = 0, (4.43)

and a system of equations about Amn is acquired by substituting Eq. (4.42) into Eq. (4.43):

N∑
n=0

A∗mnΨmn,l = Ωm,l, (4.44)

where

Ψmn,l =

0∫
−h

ϵ∗mnϵm,ldz and Ωm,l = −

0∫
−h

λ∗mϵm,ldz, (4.45)

and m = 0, 1, 2, ..., M; l = 0, 1, 2, ..., N.

Finally, in view of the linearised Bernoulli’s equation, the complex dynamic pressure p

is

p j = −ρ
∂
(
φ je−iωt

)
∂t

, (4.46)
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and the complex pressure difference acting on the net interface is defined as

∆p = p1− p2, at r = a. (4.47)

As a result, the complex function of the horizontal hydrodynamic force per unit length
along the cage height is given by

f (z) = a

2π∫
0

∆pcos(π− θ)dθ = −πaiωρ
N∑

n=0

A1nX1n fn(z)e−iωt, (4.48)

and the wave force and the resulting overturning moment with respect to the top of the
cage are

F =
∫ −d1

−(d1+d2)
f (z)dz and Mo =

∫ −d1

−(d1+d2)
f (z)

(
z+d1+

d2

2

)
dz. (4.49)

Furthermore, according to the DFSBC, Eq. (4.5), the free water surface elevation ξ is
given by

ξ j = Re
 iωφ je−iωt

g

 . (4.50)

4.4 Convergence studies and model validation

4.4.1 Convergence studies

In Section 4.3, the derived solution is written in the form of the Fourier-Bessel series,
and the infinite terms have been truncated after Nth and Mth terms. Theoretically, the
calculated result is only valid when the solution converges with the increasing number of
the series term. Therefore, convergence studies are required to determine the truncated
terms to use for accurate results. For the convergence studies, the following parameters
are adopted: H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m and τ0 = 0.7. The
nondimensional mooring spring constant α = ks/(msg) is 20, the nondimensional axial
tensile force in the net γ = Q/(msgd2) is taken as 1, and the nondimensional net mass per
unit length β = ms/(ρd2

2) = 0.001. The wave frequency ω varies from 0.2 rad/s to 1.4 rad/s
at an interval of 0.4 rad/s.

In Eq. (4.30), due to the orthogonality of cos(mθ), the convergence of η is only
determined by the series term generated by the wavenumbers from the dispersion relation
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Fig. 4.3 Convergence curves of control errors versus truncated terms for different wave frequencies:
(a) ∆Er(N) versus N; (b) ∆Er(M) versus M.

Eq. (4.24), so a control error ∆Er (N) versus the truncated term N is defined as

∆Er (N) =

∣∣∣∣η (−d1−
d2
2

)
,N+1
−η

(
−d1−

d2
2

)
,N

∣∣∣∣∣∣∣∣η (−d1−
d2
2

)
,N

∣∣∣∣ . (4.51)

The variations of ∆Er (N) versus N from 1 to 50 are shown in Fig. 4.3a. The results exhibit
different convergency speeds for different wave frequencies, and the values of ∆Er (N)

converge more slowly when the wave frequency is larger. Notably, when N > 30, the
maximum control error is less than 2.25% for all cases.

Alternatively, for the solution of the local wave field near the cage, the control error
∆Er (M) versus the truncated term M is defined as follows:

∆Er (M) =

∣∣∣∣∑−d1
z=−(d1+d2)

∑2π
θ=0∆φ(a, θ,z)

,M+1−
∑−d1

z=−(d1+d2)
∑2π
θ=0∆φ(a, θ,z)

,M

∣∣∣∣∣∣∣∣∑−d1
z=−(d1+d2)

∑2π
θ=0∆φ(a, θ,z)

,M

∣∣∣∣ . (4.52)

The curves of ∆Er (M) versus M from 1 to 50 are presented in Fig. 4.3b. Similarly, if the
wave frequency is lower, the control error will show a more rapid decay, and the control
errors of the whole cases are closed to 0 for when M > 18. Based on the convergence
studies, it is sufficient to take N = 30 and M = 20 to guarantee the accuracy for the solution
to the imposed wave action and cage displacement.
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Fig. 4.4 Model validations: (a) Horizontal wave force |F|; (b) Cage deflection amplitude |η|.

4.4.2 Model validation

In order to examine the correctness of the aforementioned formulations, consider a rigid
impermeable or porous circular cage illustrated in Zhao et al. (2011) and Park and Koo
(2015) with the parameters of h = 5 m, a = 0.15 m, d1 = 0 and d2 = 0.3 m. The structural
parameters adopted α = 1000, γ = 1000 and β = 1000 to ensure the cage motion is
negligible. The nondimensional horizontal wave force acting on the cage versus the
normalized wavenumber κ0a is shown in Fig. 4.4a. There are no significant differences
between the present model and the aforementioned studies. A small discrepancy observed
is because a horizontal impermeable plate is considered at the bottom of the cage in Zhao
et al. (2011) and Park and Koo (2015).

In addition, the current analytical solution of the cage deflection amplitude |η| is
validated with the numerical solution generated by the Runge-Kutta method, where the
parameters adopt those in the convergence studies and ω = 1 rad/s. Fig. 4.4b indicates that
the derived analytical solution is completely consistent with the numerical results.

4.5 Results and discussions

This section discusses the hydroelastic spatial characteristics of the net cages by some
numerical results. Five case groups were designed with various wave periods T (Cases A),
net opening ratios τ0 (Cases B), nondimensional mooring spring constants α (Cases C),
nondimensional axial tensile forces γ in the net (Cases D) and immersed depths d1 of the
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cage (Cases E). The detailed parameter settings are shown in Table 4.1. In this analysis, a
full-scale cage deployed in the marine aquaculture industry is considered, in which the
cage radius a = 50 m, the cage height d2 = 50 m, and the dimensionless net mass per unit
length β = 0.001. Moreover, the wave height H = 7 m and the water depth h = 200 m are
adopted.

4.5.1 Hydrodynamic behaviours

The present model can evaluate the distribution of the velocity potential Φ of the fluid
domain and then derive its corresponding dynamic pressure and free surface elevations at
a series of discretised points. Here, Cartesian coordinates (x = r cosθ and y = r sinθ) are
established to facilitate the description of the results, where the central axis of the cage is
located at the z-axis, and the incident wave propagates along the positive direction of the
x-axis.

The free surface elevations ξ (m) around the cage with varied net opening ratios (Cases
B1 to B4) are illustrated in Fig. 4.5, in which ξ is calculated from Eq. (4.50) in a domain
of x/a = ±4 and y/a = ±4. In this example, ξ adopted the values at time t/T = n, n = 0,
1, 2, ..., ∞, and the black circle is the demarcation between Regions 1 and 2. It can be
observed that the presence of the cage causes perturbations to the wave surface, especially
for the cage with an impermeable interface (i.e., net opening ratio τ0 = 0). The transmitted
wave passing through the cage will be attenuated, and its amplitude will gradually restore
to its original state. This occurs because, when the scattered wave radiates away from the
cage, the scattering potential gradually decays. Alternatively, the wave surface in the inner
region of the cage also has different extents of attenuation, and the energy dissipation is
the most severe, especially when τ0 = 0. It is worth noting that, due to the blocking effect
of the porous net, the water surface elevation inside the cage is affected by a certain lag
in propagation when compared with the waves outside the cage. Furthermore, when the
opening ratio of the net is gradually increased, the disturbance of the cylindrical net cage to
the wave surface will gradually become weak, and the observed wave scattering becomes
relatively minor for the cases with τ0 > 0.3. In engineering practice, the adopted opening
ratio of the fish cage net is usually greater than 0.6, so the influence of the net cage on the
wave surface has become weak at this time.

Fig. 4.6 shows the amplitude distributions of the pressure differences ∆pa on the net
chamber under different wave periods in Cases A1 to A4. ∆p is defined in Eq. (4.47),
and ∆pa is its modulus. The maximum values of ∆pa are mainly concentrated at the top
of the cylindrical cage, in which the maximum values are greater when the wave periods
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Table 4.1 Case groups with different studied parameters (Study I).

Cases T (s) τ α γ d1 (m)

A1 4 0.7 20 1 0
A2 6 0.7 20 1 0
A3 8 0.7 20 1 0
A4 10 0.7 20 1 0

B1 8 0.1 20 1 0
B2 8 0.2 20 1 0
B3 8 0.3 20 1 0
B4 8 0.4 20 1 0
B5 8 0.6 20 1 0
B6 8 0.7 20 1 0
B7 8 0.8 20 1 0
B8 8 0.9 20 1 0

C1 8 0.7 1 1 0
C2 8 0.7 10 1 0
C3 8 0.7 20 1 0
C4 8 0.7 Fixed end 1 0

D1 8 0.7 20 0.5 0
D2 8 0.7 20 1 0
D3 8 0.7 20 2 0
D4 8 0.7 20 4 0

E1 8 0.7 20 1 0
E2 8 0.7 20 1 10
E3 8 0.7 20 1 30
E4 8 0.7 20 1 50
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Fig. 4.5 Free water surface elevations ξ around a cylindrical net cage with different opening ratios
at t/T = n, n = 0, 1, 2, ...,∞, Cases B1 to B4: (a) τ0 = 0; (b) τ0 = 0.1; (c) τ0 = 0.2; (d) τ0 = 0.3.
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Fig. 4.6 Amplitude distributions of pressure drop ∆pa on the net interface, Cases A1 to A4: (a) T =
4 s; (b) T = 6 s; (c) T = 8 s; (d) T = 10 s.

are smaller. Nevertheless, the values of ∆pa at the lower part of the cage are relatively
minor, and the values at its bottom end are close to 0. These results demonstrate that the
wave has a more significant impact on the top part of the cage. Notably, more areas on
the cage surface will withstand the pressure drop with high amplitudes under the wave
action with longer periods, because short waves mainly concentrate on the free-water
surface. Moreover, due to the energy dissipation of the transmitted wave, the pressure drop
amplitude ∆pa on the leeward side is also slightly higher.

4.5.2 Structural dynamic responses

In this section, the structural dynamic responses of the net cage are investigated. Two
important indices are presented: the nondimensional amplitude of the structural transverse
deflection |η|/d2, and the nondimensional amplitude of the horizontal wave load per unit
length K f along the cage height. Following the work of Mandal and Sahoo (2016), K f is
defined as

K f =
| f (z)|
ρgaH

, (4.53)

in which the horizontal wave load per unit length f (z) is found from Eq. (4.48). The curves
of |η|/d2 and K f versus the relative position defined as (z+d1)/d2 are plotted in Figs. 4.7
to 4.11.
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It can be observed that the greater transverse deflection of the net chamber occurs at
the upper part of the cage, and the horizontal wave load per unit length is the largest at
the top end of the cage. At the bottom of the structure, the values of |η|/d2 and K f are
the smallest. In addition, due to the assumption of structural edge constraints, the cage
has obvious displacements at the top end (mooring constrained end), and the first-order
derivatives to z are zero at the bottom end (lateral traction-free end) for the curves of |η|/d2.

Fig. 4.7 presents the results of Cases A1 to A4 with T varying from 4 s to 10 s with an
interval of 2 s. It can be seen that when T = 8 s, the transverse deflection and wave load on
the structure are much greater than the values of the other periods. That may indicate that
the natural frequency of the net cage is close to the excited frequency of waves. In this
case, the mode shape of the structure presents a first-order modal vibration.

In Fig. 4.8, Cases B5 to B8, when the porosity of the fish cage net increases, the
transverse deflection amplitude at the upper part of the net chamber decreases but the
value of the lower part slightly increases. With regard to the coefficient K f , the values at
the upper part of the cage have a greater difference, but when (z+d1)/d2 is smaller than
−0.3, these differences are relatively small. This is because these cases are set as floating
conditions, and the porous effect of the fish cage net will have a more significant blocking
impact on the flow close to the wave surface.

In Fig. 4.9, Cases C1 to C4 show the effect of the mooring cable stiffness, and there is
also a fixed end case (η = 0 at z = −d1) presented. When α = 0.5, a weak spring stiffness
results in the vanishing of peaks on the curves of |η|/d2 and a significant reduction of
the normalised wave load K f . Nevertheless, when α > 10, its influence on wave action
becomes relatively minor.

Referring to Fig. 4.10 (Cases D1 to D4), the distribution characteristics of |η|/d2 and
K f are similar when γ < 4. If the axial tension in the cage increases, the overall deformation
of the cage can be suppressed, but the top displacement will increase. When γ = 4, there
are no peaks along the curves of |η|/d2. Moreover, the wave action is enhanced to a certain
extent for a stiffer net cage.

In Fig. 4.11 (Cases D1 to D4), it can be seen that the wave effect will gradually
become minimal as the diving depth of the cage increases. The corresponding structural
deformation and wave load are also reduced significantly. This justifies the submergence
of the cage into a deeper water level to avoid the strong surface waves. Moreover, the three-
dimensional (3D) shapes of the net chamber with the maximum deformation are plotted
at different submerged depths in Fig. 4.12, where the deflection values are magnified by
an exaggerated scale of 5 times. Little wave response of the cage is observed when it is
submerged at d1/h = 0.25.
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Fig. 4.7 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b) Nondimensional
horizontal wave load amplitudes per unit length K f along cage height for various wave periods T ,
Cases A1 to A4.
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Fig. 4.8 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b) Nondimensional
horizontal wave load amplitudes per unit length K f along cage height for various net opening ratios
τ0, Cases B5 to B8.
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Fig. 4.9 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b) Nondimensional
horizontal wave load amplitudes per unit length K f along cage height for various dimensionless
mooring spring constants α, Cases C1 to C4.
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Fig. 4.10 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b) Nondimensional
horizontal wave load amplitudes per unit length K f along cage height for various dimensionless
axial tensile forces γ in the net, Cases D1 to D4.
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Fig. 4.11 (a) Nondimensional transverse deflection amplitudes of cage |η|/d2; (b) Nondimensional
horizontal wave load amplitudes per unit length K f along cage height for various relative diving
depths d1/h of the cage, Cases E1 to E4.

4.5.3 Parametric studies

In order to investigate the effects of hydrodynamic and structural parameters on the wave
loads, parametric studies are conducted in this section. The nondimensional amplitude of
the hydrodynamic force KF in the horizontal direction and the nondimensional amplitude
of the overturning moment KM with respect to the cage top are defined similarly to Mandal
and Sahoo (2016):

KF =
|F|
ρgaHh

and KM =
|Mo|

ρgaHh(d1+d2)
, (4.54)

in which the wave force F and the resulting overturning moment Mo are found from Eq.
(4.49).

In the parametric studies, the following nondimensional hydrodynamic parameters are
defined: the wave-effect parameter Cw = g/(ω2h) defined by Chwang (1983), the incident
wave steepness H/L and the relative water depth h/L, where L is the incident wavelength.
The parameters related to the cage dimensions include the relative diameter of the cage
2a/L, the relative dividing depths of the cage d1/h and the relative height of the cage d2/h.
Furthermore, the structural parameters have the nondimensional mooring spring constant
α, the nondimensional axial tensile force in the net γ, the nondimensional net mass per
unit length β and the net opening ratio τ0.
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Fig. 4.12 3D shapes of a net cage at different submerged depths with the maximum deformation in
an exaggerated scale of 5 times: (a) d1/h = 0; (b) d1/h = 0.05; (c) d1/h = 0.15; (d) d1/h = 0.25.



4.5 Results and discussions

I. Hydrodynamic conditions

The relationship between the wave load on the cage and the wave frequency is given in Fig.
4.13. The curves of KF and KM versus Cw show multiple peak points and zero points. This
may be because when the wavelength is at a specific value, the phase difference between
the scattered waves in the outer region and the inner region near the circular cage is 180
degrees, resulting in wave attenuation. Conversely, if the phase difference is small, the
wave action will be strengthened at this frequency. On the other hand, as in Section 4.3,
the solution to the wave response is decomposed into an infinite superimposed modes
associated with κna, so the response peaks of the multiple modes manifest against varied
exited wave frequencies.

As shown in Fig. 4.14, the coefficients KF and KM are firstly decreased to the minimum
values with the relative wave height H/L, and then they start to increase. In the small-
amplitude wave theory, the velocity of the water particle has a linear relationship with
the wave height. However, Eq. (4.10) indicates that the real part τr of the porous-effect
parameter τ is changed related to the varied incident wave slope ε = κ0H/2. As a result,
the wave load acting on the fish cage net does not increase linearly with the wave height.

Referring to Fig. 4.15, when the water depth h increases from the values of the cage
height to twice the wavelength, the values of KF and KM will decrease in opposition to
the increase in the relative water depth h/L. It is worth noting that the water depth h is the
denominator in the definition of the coefficients KF and KM, which may also contribute to
the decrease in the values.

II. Cage dimensions

As illustrated in Fig. 4.16, at a constant wavelength, by increasing the diameter of the cage,
the curves of the coefficients KF and KM will experience multiple peak points and zeros
points as well, where the hydrodynamic force will vanish when 2a/L is around 0.59 and
1.70. The wave force on the cylindrical cage has a similar variation under various wave
frequencies. Therefore, the ratio of the diameter of the circular cage to the wavelength is
crucial in engineering design.

If the cage is submerged to a deeper location underwater, the effect of surface waves
will be weakened, so the coefficients KF and KM will be reduced in Fig. 4.17. However,
this decreasing trend will slow down as the wave action has been minimal at extremely
deep water levels.
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Fig. 4.13 Effect of wave-effect parameter Cw on (a) Nondimensional amplitude of horizontal
hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for
various net opening ratios τ0, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and
β = 0.001.
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Fig. 4.14 Effect of wave steepness H/L on (a) Nondimensional amplitude of horizontal hydrody-
namic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for various
net opening ratios τ0, T = 8 s, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and β = 0.001.
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Fig. 4.15 Effect of relative water depth h/L on (a) Nondimensional amplitude of horizontal hy-
drodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for
various net opening ratios τ0, T = 8 s, H = 7 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and
β = 0.001.

The effect of cage height on the wave load is shown in Fig. 4.18. Attentively, as the
cage height d2 increases, the axial tensile force Q and the mass per unit length ms of the net
chamber will increase if the defined nondimensional parameters γ and β remain constant.
This is unreasonable. Therefore, the relevant structural parameters are assumed to take
the following values: Q/(msga) = 1 and ms/(ρa2) = 0.001. Assuming that the top of the
cage is at the mean water level, with the increase of the cage height, the values of KF and
KM will rapidly rush to the peak point, and then begin to decrease. The magnitude of KF

will remain constant after d2/h = 0.2. This is because the imposed wave pressure has been
already negligible at the part of the cage close to the deep water level.

III. Structural parameters

It can be observed from Fig. 4.19 that as the spring stiffness of the mooring rope increases,
the wave action coefficients KF and KM increase to reach peak values, and then gradually
decrease. When α > 40, this trend is also slowed down.

The curves in Fig. 4.20 show that the coefficients KF and KM are greater with respect
to increasing γ. This might be explained by the fact that more momentum of the fluid
is dissipated when impacting on stiffer structures. However, the curves of KF present a
slowdown in the growth trend, but KM increases approximately linearly when γ > 1.
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Fig. 4.16 Effect of relative cage diameter 2a/L on (a) Nondimensional amplitude of horizontal
hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for
various net opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, d1 = 0, d2 = 50 m, α = 20, γ = 1 and
β = 0.001.
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Fig. 4.17 Effect of relative cage diving depth d1/h on (a) Nondimensional amplitude of horizontal
hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for
various net opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d2 = 50 m, α = 20, γ = 1 and
β = 0.001.
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Fig. 4.18 Effect of relative cage height d2/h on (a) Nondimensional amplitude of horizontal
hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for
various net opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, α = 20, Q/(msga) = 1
and ms/(ρa2) = 0.001.

The mass of the fish cage net is generally determined by different net materials or
biomass effects. In Fig. 4.21, in order to ensure a constant mooring stiffness and axial
tension in the net, we have taken that ks/(ρgd2

2) = 0.02 and Q/(ρgd3
2) = 0.001. It can be

observed that, with increasing β from 0 to 0.01, the wave force coefficient KF initially
decreases and then increases slowly, but the moment coefficient KM decreases slightly first
and then increases rapidly.

In Fig. 4.22, under different axial tensions in the net, the coefficients KF and KM show
different varying trends when τ0 < 0.4. However, the increase in the porosity of the fish
cage net is conducive for reducing the wave action when the opening ratio is over 0.4.
Consequently, it is important that the porosity of the net is kept high, and it is essential to
clean the net often to remove the biofouling organisms and hydroids to reduce the wave
load on the fish cage. Notably, when the net opening ratio τ0 = 1, i.e., the net does not exist,
the predicted wave forces are not zero. According to Ito et al. (2014), theoretically, the
porous effect parameter τ should go to infinity when the net interface becomes completely
permeable, but Eq. (4.10) obviously does not obey this scenario. Therefore, a more suitable
formula for the porous effect parameter is required in future studies.

On the other hand, although the assumption in Eq. (4.10) ignores the fluid inertia effect
for the flow penetrating through the net interface, its influence still needs to be discussed.
An empirical formula of τi provided by Ito et al. (2014) indicates that most values are in
a range of less than 1 for the cube net cage. Here, by assuming that the values of τi for
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Fig. 4.19 Effect of nondimensional mooring spring constant α on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning
moment KM for various net opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 =

50 m, γ = 1 and β = 0.001.

most cylindrical net cages are less than 1, the variations of KF and KM with respect to
τi from 0 to 1 are shown in Fig. 4.23. These curves indicate a significant influence of τi
when the values of γ are high. A minor effect of τi is seen when γ is smaller, especially for
the coefficient KM. As a result, the porous effect of the fish cage net will exhibit different
properties with different axial tensions, and thus the fluid inertia effect parameter τi still
needs further investigation.

4.6 Conclusions

A semi-analytical model for wave-cage interaction is established based on the potential
flow theory to investigate the hydroelastic behaviour of a cylindrical fish net cage under
wave actions. The net cage is modelled as a flexible porous cylinder and its motions are
governed by the string vibration equations. By separating variables, the general solution
of this physics problem can be expressed by the Fourier-Bessel series. The unknown
constants in these series are determined from matching the boundary conditions and the
least squares method. Based on this study, the following conclusions may be drawn:

i. The disturbance caused by the cage to the wave surface is weaker when the opening
ratio of the net is greater than 0.3. The wave actions are stronger near the mean
water level, as expected. Consequently, a submersible cage is recommended to avoid
the high surface-wave energy.
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Fig. 4.20 Effect of nondimensional axial tensile force γ in the net on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning
moment KM for various net opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 =

50 m, α = 20 and β = 0.001.
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Fig. 4.21 Effect of nondimensional net mass per unit length β on (a) Nondimensional amplitude
of horizontal hydrodynamic force KF ; (b) Nondimensional amplitude of horizontal overturning
moment KM for various net opening ratios τ0, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 =

50 m, α = 20 and γ = 1.
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Fig. 4.22 Effect of net opening ratio τ0 on (a) Nondimensional amplitude of horizontal hydrody-
namic force KF ; (b) Nondimensional amplitude of horizontal overturning moment KM for various
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4.6 Conclusions

ii. Under different mooring stiffness and axial tension in the net, the deflection amplitude
of the cage presents different distribution characteristics.

iii. The net chamber will be subjected to critical wave responses at particular frequencies,
but some specific ratios of the cage diameter to the wavelength might cause the
vanishing of the wave force and the overturning moment on the cage.

iv. Appropriately increasing the porosity and reducing the axial tension of the net
chamber are beneficial in reducing the wave load.

v. The porous effect of the fish cage net is significantly impacted by the axial tension in
the cage.

The present study reveals some mechanical characteristics of the interaction between
the wave and the net cage and provides a reference for the design and application of fish
cage systems. However, the theories and formulas used in the present study are all based
on linear models, so they cannot solve nonlinear problems in wider scenarios, such as
nonlinear waves, quadratic porous flow models, etc., and the structural vibration equation
may be oversimplified. Those problems will be considered and resolved in future studies.
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Analytical solutions of hydroelastic interactions between
waves and submerged open-net fish cage modelled as a
porous cylindrical thin shell

Abstract: In this paper, a new semi-analytical solution is proposed to describe the interac-
tions between ocean waves and a flexible cylindrical net cage that is submerged at different
depths below the mean water level. The flexible net is treated as a thin perforated shell,
and its deformation is governed by the membrane vibration equation of cylindrical shells.
The small-amplitude wave theory is adopted to simulate the wavefield, while the flow
passing through the cage is described by the porous medium theory. The numerical results
exhibit significant wave responses of the net cage, including the distribution properties of
wave surfaces, dynamic pressure drops on the net interface and net structure displacements.
Furthermore, the influences of several important design parameters on the hydrodynamic
action imposed on the net cage are revealed by parametric studies. The present studies
conclude that the significant wave impact is mainly concentrated on the free water surface,
and increasing the porosity and flexibility of the net can alleviate the wave scattering and
the hydrodynamic actions. In addition, at specific wave frequencies, the horizontal wave
force acting on the cage will vanish. These findings should be useful to engineers who are
designing offshore fish cage systems.

Keywords: Offshore fish net cage; Hydroelastic interaction; Small-amplitude wave theory;
Membrane theory of cylindrical shells; Fourier-Bessel series; Porous medium theory.
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5.1 Introduction

Fish is one of the major sources of animal protein for mankind. With the ever-rising
world’s population and a declining wild fish capture due to overfishing, there is a clear
demand for farmed fish to supplement wild capture fish. Data given from the State of
World Fisheries and Aquaculture (FAO, 2018) show that from 1950 to 2016, the output of
aquatic products increased to 170 tons per year with an 850% growth rate, of which marine
aquatic products accounted for approximately 69%. In Australia, aquaculture industry has
been in a fast-growing phase and provides high-quality, safe and sustainable seafood, with
output values reaching 3.3 billion Australian dollars in 2020 (Chen et al., 2021). These
developments in marine aquaculture have provided a strong motivation in carrying out
research and development of larger fish cage systems. In general, fish farms are located
in sheltered nearshore zones where the sea state condition is benign. With prolonged fish
farming in these sheltered waters, the environmental system becomes highly stressed due
to the accumulation of fish wastes and uneaten fish feed in the farm sites. In order to
support sustainable fish farming, fishing industries are planning to move their nearshore
farms to offshore sites where there is a larger water depth that helps in dispersing wastes
around the fish cages and provides the fish with more space to swim in taller cages (Chu
et al., 2020). Nonetheless, moving fish cage systems to offshore sites still face several
challenges that include a higher energy environment (with stronger waves, currents and
winds) and deeper waters. This would mean that fish cages and mooring systems have
to be more robust, larger and durable to withstand the harsher environmental conditions
or be submerged to move away from strong surface waves, and be operated remotely or
unmanned in order to keep workers from harm’s way.

To understand the hydroelastic behaviours related to the design of fish net cage systems,
numerical modelling and simulations have been commonly used. The mesh line/bar
model (Tsukrov et al., 2003; Zhan et al., 2006) or mass-spring model (Li et al., 2006;
Zhao et al., 2008) is often utilised for numerical modelling of fish cage nets, where the
hydrodynamic force can be evaluated by the Morison equation (Li et al., 2006; Tsukrov
et al., 2003; Zhao et al., 2008) or screen type method (Kristiansen and Faltinsen, 2012).
However, the influence of the net structure and its deformation on the flow field cannot be
ignored. Therefore, some researchers, exampli gratia, Bi et al. (2014) and Yao et al. (2016),
take into consideration the fluid-structure coupling by developing CFD models, but this
requires a large amount of computational time. In addition, detailed numerical modelling
is inefficient and uneconomical for a large full-scale fish net cage in existing computing
power for engineering. Therefore, if a part of the computations can be done analytically,
then a semi-analytical method will reduce the computational time significantly.
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Theoretically, in hydrodynamic analysis, it is feasible to model the fish cage net as a
porous medium allowing for water to flow through the cage. Chwang (1983) proposed
a porous wavemaker theory based on the potential flow theory, where the porous flow is
governed by Darcy’s law, and the solution of velocity potential is written in the form of
Fourier-Bessel series for the studies on wave diffraction caused by rigid porous barriers
(Lee and Chwang, 2000; Yu and Chwang, 1994). Later, Sankarbabu et al. (2007) and
Park et al. (2010) studied the wave interference among an array of rigid porous cylinders,
where several local cylindrical coordinates were established for each cylinder, and the
total diffraction potential was regarded as the superposition of the diffraction potential
generated by each cylinder through Graf’s addition theorem. Furthermore, Liang et al.
(2021) constructed a hypersingular integral equation to simulate the interaction between
water waves and horizontal thin plates. Recently, some optimised numerical methods
have also received attention in the field of wave-structure interaction. Ito et al. (2014)
developed a hybrid method to calculate the wave force acting on a cube net cage restrained
by mooring cables, in which the Fourier-Bessel expansion was utilised for the far-field
waves, and the boundary element method (BEM) was applied for the ambient waves. Li
et al. (2013b) introduced a scaled boundary finite element model (SBFEM) to investigate
the wave-group pile interaction for any number of piles with different cross-sections and
spatial layouts. These two numerical methods (BEM and SBFEM) greatly improve the
computational efficiency through dimensionality reduction, but high numerical accuracy is
guaranteed at the same time.

On the other hand, the structural dynamic issues can be solved by combining the
kinematic boundary conditions on the net interface and the vibration equation of continua.
Abul-Azm and Williams (1987) investigated the vibrations of flexible impermeable cylin-
ders excited by horizontal wave actions, in which the displacements of these cylinders
are governed by the transverse vibration equation of a one-dimensional elastic beam.
According to the analytical solution of Behera and Sahoo (2015), if the wave propagates
through a horizontal flexible structure, special dispersion relations need to be determined
through the kinematic boundary conditions on the solid interface. Then, Zheng et al.
(2020a) expanded this topic into the problem of multiple horizontal porous disks in a
three-dimensional wave field, where the vertical displacements of these disks are governed
by the two-dimensional membrane vibration equation without shear and bending stiff-
ness. However, Kar et al. (2020) considered the shear and bending effects in the flexible
structures in the investigation of long-wave Bragg scattering induced by multiple floating
horizontal plates above the undulating seabed. Based on the foregoing discussion, some
researchers attempted to adopt this approach to analyse the flexible net cage approximately.
The 1-D transverse vibration equation of elastic beams or strings are utilised to express
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the horizontal deformation of the cylindrical net cage (Mandal et al., 2013; Mandal and
Sahoo, 2016; Su et al., 2015). Mandal and Sahoo (2016) considered the horizontal net
plate at the bottom of the cage as well, whose deflection is described by the 2-D membrane
vibration equation. Lately, Selvan et al. (2021) extended the work of Mandal and Sahoo
(2016) to the interference effects of multiple moored net cages in waves. Nevertheless, if
the cross-sectional size of the net chamber is too large relative to its vertical dimension,
it may represent an over-simplification of the horizontal motion of the cage modelled as
the 1-D problem. A net cage typically deforms in the front and behind differently in the
wave propagating direction. Moreover, the structural motion is simply expressed by the
1-D or 2-D vibration equation of the continua, where the variations in stress terms due to
the elastic deformations are neglected. This assumption is also considered unrealistic.

As a result, it may be more appropriate to approximate the net chamber as a porous
thin cylindrical shell rather than a beam or string. Vibration analysis of cylindrical shells
is widely discussed in acoustic research. Flügge (1973) has done tremendous work on
the theory of stresses in shells, including membrane theories and bending theories of the
shell, where the former assumes that the shell cannot provide bending stiffness. Lee et al.
(1993) used Donnell’s equation to describe the free and forced vibration of the shell and
the corresponding solution method in the study of wave propagation on the shell. Chen
et al. (2015) discussed the motion equations and boundary value problems of a composite
structure assembled by conical shells, cylindrical shells and circular plates. Guo et al.
(2017) studied the vibration and acoustic radiation of a finite cylindrical shell submerged
underwater based on the potential flow theory and Flügge’s shell equations (Flügge, 1973),
but the corresponding boundary value problems were not discussed. In addition, the
application of membrane theories to the free vibration issue of a cylindrical shell is well
summarised and presented by Belubekyan et al. (2017).

Based on the aforementioned literature review, some research gaps are identified.
Firstly, the evaluation of hydrodynamic loads based on empirical formulas (Morison
equations or screen type methods) cannot reveal the wave scattering effects (diffraction and
radiation effects) caused by the flexible net structure. Secondly, in the existing hydroelastic
solutions, it is considered to be oversimplified and unreasonable that the vertical net
chamber is modelled based on the transverse vibration equation of the 1-D elastic beams of
strings, because the real motion of the cage should be a 3-D problem. Lastly, when the fish
net cage moves from the nearshore to an offshore site, knowledge about its hydroelastic
response is lacking. Therefore, it is urgent to develop a more precise and efficient model to
explore the key factors affecting the dynamic responses of fish net cages that are exposed
to high-energy environments.
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In the present study, a semi-analytical solution is derived based on the linear potential
flow theory and the membrane vibration equation of cylindrical shells to ascertain the
hydroelastic behaviours of submersible cylindrical open-net fish cages under wave actions.
This method will allow the analyst to rapidly determine the particular solution of the
net chamber displacements and the wave field. The layout of this paper is as follows:
in Section 5.2, the problem at hand is articulated, and the assumptions and theoretical
formulation are presented. The specific solution of this physical problem is outlined
in Section 5.3. In Section 5.4, the convergence and validation of the proposed semi-
analytical solution are presented. Section 5.5 exhibits the numerical results and explains
the significant hydroelastic characteristics of the net cages, and a parametric study is
presented to understand the relationships between some pertinent design parameters and
the wave actions on the cage, which is beneficial to the application of offshore fish farming.
Finally, some key conclusions are given in Section 5.6.

5.2 Problem definition, assumption and theoretical for-
mulation

A cylindrical net cage is shown in Fig. 5.1, where the z-axis of a cylindrical coordinate
system (r, θ, z) is placed at the central axis of the cage. The water depth is denoted by h,
and the mean water level is at z = 0. The wave propagates in a direction of θ = 0, and the
free water surface elevation is z = ξ. The cage is submerged to a depth d1 below the mean
water level, with a radius of a and a height of d2.

The flow field is divided into two zones: Zone 1 (r > a, −h ≤ z ≤ 0) is in the external
region outside the net cage, while Zone 2 (r ≤ a, −h ≤ z ≤ 0) is in the inner region of the
net cage. For the structural region, S net is the net portion −(d1+d2) ≤ z ≤ −d1, and S gap is
the gap portion −d1 < z ≤ 0∪−h ≤ z < −(d1+d2). Moreover, the upper edge of the net is
clamped at z = −d1, and its lower end is assumed to be traction-free at z = −(d1+d2).

The aim of the present study is to determine the hydroelastic behaviour (free water
surface elevation, dynamic pressure, structural displacement, wave load, etc.) of a flexible,
submerged and cylindrical fish net cage under wave action.

5.2.1 Governing equations

The fluid is assumed to be incompressible and inviscid, and the flow is irrotational. Con-
sidering a small-amplitude wave with a circular frequency ω and a wave height H, the
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Fig. 5.1 Submerged cylindrical fish net cage in a constant water depth and under wave action: (a)
Plan view; (b) Isometric view.

velocity potential Φ j (r, θ, z, t) ( j = 1, 2 denotes Zones 1 and 2, respectively) of the flow
field may be expressed as:

Φ j = Re
[
φ j (r, θ,z)e−iωt

]
, (5.1)

where φ j is the complex amplitude of the velocity potential and satisfies the Laplace
equation in the cylindrical coordinate system:

∂2φ j

∂r
+

1
r
∂φ j

∂r
+

1
r2

∂2φ j

∂θ
+
∂2φ j

∂z2 = 0. (5.2)

The complex amplitude of the velocity potential φ j can be represented as a sum of the
incident wave velocity potential φI and the scattered wave velocity potential φS

j due to
diffraction and radiation, i.e.:

φ j = φ
I +φS

j . (5.3)

On the other hand, the net chamber is equivalent to a perforated cylindrical shell as
shown in Fig. 5.2a. According to the Flügge (1973) membrane theory, the equations of
motion and constitutive elastic law for the shell element illustrated in Fig. 5.2b are given
by 

∂Nz
∂z +

1
a
∂Nzθ
∂θ = ρsts

∂2U
∂t2

1
a
∂Nθ
∂θ +

∂Nzθ
∂z = ρsts

∂2V
∂t2

Nθ
a +∆p = −ρsts

∂2W
∂t2

, (5.4)

95



Analytical Schemes by Practicing the Shell-Membrane Theory

Fig. 5.2 Sketch of a cylindrical shell: (a) Displacement components; (b) Membrane stress resultants
in a shell element.


Nz =C

(
∂U
∂z +

ν
a
∂V
∂θ +

ν
aW

)
Nθ =C

(
1
a
∂V
∂θ +

W
a + ν

∂U
∂z

)
Nzθ =

C(1−ν)
2

(
1
a
∂U
∂θ +

∂V
∂z

) . (5.5)

U is the axial displacements (positive along the upward direction of z), V is the circum-
ferential displacement (positive in the anti-clockwise direction of increasing θ), and W is
the radial displacement (positive when outward). Nz, Nθ and Nzθ are the membrane stress
resultants lying in the tangential planes of the shell element, respectively, which means
the shell cannot provide a bending stiffness. E is the elastic modulus of the shell, G is the
shear modulus of the shell, ν is the Poisson’s ratio of the shell, ρs is the shell bulk density,
ts is the shell thickness and the coefficient C = Ets(1−ν2)−1. ∆p is the pressure drop acting
normal to the net surface.

Substituting Eq. (5.5) into Eq. (5.4) yields:
∇2U + 1+ν

1−ν
∂
∂z

(
∂U
∂z +

1
a
∂V
∂θ

)
+ 2ν

(1−ν)a
∂W
∂z =

1
cs
∂2U
∂t2

∇2V + 1
a

1+ν
1−ν

∂
∂θ

(
∂U
∂z +

1
a
∂V
∂θ

)
+ 2

(1−ν)a2
∂W
∂θ =

1
cs
∂2V
∂t2

1
a
∂V
∂θ +

W
a + ν

∂U
∂z +

a
C∆p = −ρsats

C
∂2W
∂t2

, (5.6)

where

∇2 =
∂2

∂z2 +
1
a2
∂2

∂θ2
and cs =

G
ρs
. (5.7)
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5.2.2 Boundary conditions

At the free water surface at z = ξ, the linearised kinematic free surface (KFSBC) boundary
condition is

∂Φ j

∂z
=
∂ξ

∂t
at z = 0, (5.8)

and dynamic free surface boundary condition (DFSBC) satisfies that

ξ = −
1
g
∂Φ j

∂t
at z = 0. (5.9)

In view of Eqs. (5.8) and (5.9), the boundary condition on the mean water level is given by

∂φ j

∂z
−
ω2

g
φ j = 0 at z = 0, (5.10)

and the slippery boundary condition applied on the seabed is given by

∂φ j

∂z
= 0 at z = −h. (5.11)

When r approaches infinity, the scattered wave potential φS
j satisfies the Sommerfeld

(1949) radiation condition:

lim
r→∞

√
r

∂φS
1

∂r
− iκ0φS

1

 = 0, (5.12)

where κ0 is the wavenumber of the incident wave.

For the hydrodynamic analysis of net cages from some scholars, for example, Bi et al.
(2014) and Ito et al. (2014), the net can be treated as a porous medium as shown in Fig.
5.3, so the flow passing through the net surface is governed by the kinematic condition:

∂Φ j

∂r
= iκ0τ (Φ2−Φ1)+

∂W
∂t

at r = a and z ∈ S net, (5.13)

in which τ is the porous-effect parameter of the porous medium (Yu and Chwang, 1994):

τ = τr + iτi =
τ0
κ0ts

fr + i fi
fr2+ fi2

, (5.14)

where τ0, fr and fi are the net porosity (the percentage of void space in the net), linearised
porous resistance coefficient and fluid inertia coefficient, respectively. The real part τr
represents the porous resistance effect, and the imaginary part τi means the fluid inertia
effect. Mandal and Sahoo (2016) indicated that the coefficients fr and fi depend on fluid
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Fig. 5.3 The fish cage net is modelled as a porous membrane.

viscosity, medium porosity, geometric shape and surface properties of the porous medium,
which need to be calibrated by experimental data. From Eq. (5.14), it can be found that
τ is related to the wave frequency and water depth. Ito et al. (2014) also revealed that τ
can be influenced by the wave height. Moreover, the diameter of the net twine determines
the net opening ratio. Consequently, τ is a parameter dependent on Keulegan–Carpenter
number (KC). According to Hamelin et al. (2013), when the KC number is higher, the
amplitude of the wave-induced drag effect is gradually close to the values of steady flow.
The experimental investigations of Zhao et al. (2008) illustrated that the KC number of
the net structure ranges from 150 to 350, and the fluid inertia force is far smaller than the
wave drag force simultaneously. As a result, this might enable τr to be predicted by the
fluid mechanics at the steady flow. Additionally, if the ratio of the permeability coefficient
in the macroscopic porous medium model to that obtained in the micro-fluid simulation
is within a certain range, there will be a reasonable consistency between the two models
(Tang et al., 2020). Notably, in the studies of the cube net cage, Ito et al. (2014) found that
the added mass effect caused by net acceleration is very important, especially when the
overall size of the cage is large relative to the incident wavelength. The added mass will
trigger an additional flow inertia effect. The continuity of normal velocity and pressure at
the interface between Zones 1 and 2 requires

∂φ1

∂r
=
∂φ2

∂r
at r = a and −h < z < 0, (5.15)

φ1 = φ2 at r = a and z ∈ S gap. (5.16)
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Moreover, according to Belubekyan et al. (2017), for the edge value problems of the
net chamber, a traction-free condition on the bottom end yields

Nz = 0 and Nzθ = 0 at z = −(d1+d2), (5.17)

and if the top end is clamped, it satisfies that

U = 0 and V = 0 at z = −d1. (5.18)

It can be found that the radial displacement W = 0 cannot be satisfied for the clamped
constraint condition. The specific reason will be discussed later.

5.3 Derivation of the solutions

5.3.1 Fluid domain

Subjected to the governing equation Eq. (5.2) and the boundary conditions of Eqs. (5.10)
to (5.12), φ1 (r, θ, z) may be expressed in the suitable form:

φ1 = φ
I +φS

1 , (5.19)

where

φI =

+∞∑
m=−∞

−
igH
2ω

cosh[κ0 (z+h)]
cosh(κ0h)

imJm (κ0r)eimθ, (5.20)

φS
1 =

+∞∑
m=−∞

+∞∑
n=1

Amn
Km (κnr)
Km
′ (κna)

cos[κn (z+h)]
cos(κnh)

eimθ. (5.21)

Similarly, for Zone 2, the velocity potential satisfies the governing equation Eq. (5.2) and
the boundary conditions of Eqs. (5.10) and (5.11). Therefore, the general solution of φ2 (r,
θ, z) is

φ2 = φ
I +φS

2 , (5.22)

where

φS
2 =

+∞∑
m=−∞

+∞∑
n=1

Bmn
Im (κnr)
Im
′ (κna)

cos[κn (z+h)]
cos(κnh)

eimθ, (5.23)
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and κns is the positive real roots of the following dispersion relations:
ω2 = gκn tanh(κnh) , n = 0

κn = −iκ0, n = 1

ω2 = −gκn tan(κnh) , n > 1

. (5.24)

Amn and Bmn are the unknown constants, Jm is the first kind of Bessel functions of the mth
orders, Im is the first kind of modified Bessel functions of the mth orders, and Km is the
second kind of modified Bessel functions of the mth orders.

In view of the velocity continuity, by substituting Eqs. (5.19) to (5.23) into the boundary
condition Eq. (5.15), a relationship is obtained by the orthogonality of [cosκn(z+h)] over
−h ≤ z ≤ 0 and eimθ over 0 ≤ θ ≤ 2π:

Amn = Bmn. (5.25)

According to the linearised Bernoulli’s equation, the dynamic pressure p is given by:

p j = Re

−ρ∂
(
φ je−iωt

)
∂t

 , (5.26)

where ρ is the water density, and the pressure drop acting on the net surface is defined as

∆p = p1− p2 = Re
[
iωρ (φ1−φ2)e−iωt

]
at r = a. (5.27)

Therefore, the complex functions of the wave force and the corresponding overturning
moment to the top of the cage in the horizontal direction are

F = aiωρ

−d1∫
−(d1+d2)

2π∫
0

(φ1−φ2)cos(π− θ)dθdze−iωt, (5.28)

Mo = aiωρ

−d1∫
−(d1+d2)

2π∫
0

(φ1−φ2)cos(π− θ) (z+d1)dθdze−iωt. (5.29)

Moreover, because of the linearised dynamic boundary condition Eq. (5.9), the free surface
elevations ξ are given by

ξ j = Re
 iωφ je−iωt

g

 . (5.30)
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5.3.2 Structural domain

For the structural governing equation Eq. (5.6), the solutions are sought in the form:

U = Re

 +∞∑
m=−∞

Um (z)eimθe−iωt


V = Re

 +∞∑
m=−∞

Vm (z)eimθe−iωt


W = Re

 +∞∑
m=−∞

Wm (z)eimθe−iωt


. (5.31)

By substituting Eq. (5.31) and Eq. (5.27) into Eq. (5.6) and using the orthogonal operation,
the following equations are obtained:

L1 L2 L3

L2 L4 L5

L3 L5 L6



Um

Vm

Wm

 =


0
0
f p
m

 , (5.32)

and the differential operators are as follows:

L1 =
d2

dz2 +
ω2

εcs
−

m2

εa2

L2 =
im
a

(
1−

1
ε

)
d
dz

L3 =
ν

a
d
dz

L4 =
1
ε

d2

dz2 +
ω2

εcs
−

m2

a2

L5 =
im
a2

L6 =
1
a2 −

ρstsω
2

C

, (5.33)

where,

ε =
2

1−υ
, f p

m = −
iωρ
C

+∞∑
n=1

AmnXmn
cos[kn (z+h)]

cos(knh)
and Xmn =

Km (knr)
Km
′ (kna)

−
Im (knr)
Im
′ (kna)

. (5.34)
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By invoking the operators L2 and L1 to the first and second equation in Eq. (5.33)
respectively, Um is eliminated. Thus

(L2L2−L1L4)Vm = − (L2L3−L1L5)Wm. (5.35)

By conducting the same manipulation to Vm, we obtain

(L2L2−L1L4)Um = − (L2L5−L3L4)Wm. (5.36)

Finally, by applying the operator (L2L2−L1L4) to the third equation in Eq. (5.32), we have

[−L3 (L2L5−L3L4)−L5 (L2L3−L1L5)+L6 (L2L2−L1L4)]Wm

= (L2L2−L1L4) f p
m .

(5.37)

Therefore, Um, Vm and Wm can be expressed as

Um (z) =
4∑

b=1

αmbCmbeqmbz+

+∞∑
n=1

AmnγmnFmn
sin[κn (z+h)]

cos(κnh)
, (5.38)

Vm (z) =
4∑

b=1

βmbCmbeqmbz+

+∞∑
n=1

AmnδmnFmn
cos[κn (z+h)]

cos(κnh)
, (5.39)

Wm (z) =
4∑

b=1

Cmbeqmbz+

+∞∑
n=1

AmnFmn
cos[κn (z+h)]

cos(κnh)
, (5.40)

where qmb represents the four roots of the characteristic equation of Eq. (5.37), Cmb is
the unknown constant determined by the edge conditions Eqs. (5.17) and (5.18), and the
second term of Eq. (5.40) is a particular solution of Eq. (5.37). Furthermore, the unknown
constants αmb, γmb, βmb and δmb can be obtained from Eqs. (5.35) and (5.36).

There are four unknown Cmb in Eqs. (5.38) to (5.40), that is, only four edge constraints
can be satisfied. Nevertheless, there are five boundary value conditions for the cage, i.e.,
Nz = 0 and Nzθ = 0 at the traction free end, and U = 0, V = 0 and W = 0 at the fixed end.
Therefore, some choices must be made from them. Flügge (1973) gave a justification that
there are the internal forces Nz and Nzθ at the shell edge to enforce the displacements U and
V , but there is no internal force in the direction of W at the shell edge. It therefore seems
most reasonable to determine U = 0, V = 0 for the fixed end. By substituting Eqs. (5.38)
to (5.40) into Eqs. (5.17) and (5.18), respectively, and utilising the orthogonal operation, a
group of equations are derived as follows:

102



5.3 Derivation of the solutions

for the traction-free end at z = −(d1+d2),

+∞∑
n=1

Amn (aknγmnFmn+ imνδmnFmn+ νFmn)
cos[κn (z+h)]

cos(κnh)

+

4∑
b=1

Cκb (aαmbqmb+ imνβmb+ ν)eqmbz = 0,

(5.41)

+∞∑
n=1

Amn (imγmnFmn−aknδmnFmn)
sin[κn (z+h)]

cos(κnh)

+

4∑
b=1

Cb
m (imαmb+aβmbqmb)eqmbz = 0,

(5.42)

and for the clamped end at z = −d1,

+∞∑
n=1

AmnγmnFmn
sin[κn (z+h)]

cos(κnh)
+

4∑
b=1

Cb
mαmbeqmbz = 0, (5.43)

+∞∑
n=1

AmnδmnFmn
cos[κn (z+h)]

cos(κnh)
+

4∑
b=1

Cb
mβmbeqmbz = 0. (5.44)

5.3.3 Fluid-structure interaction

For the net region z ∈ S net, by substituting Eqs. (5.1), (5.19) to (5.23), (5.31) and (5.40)
into Eq. (5.13) as well as noting the orthogonality of eimθ on 0 ≤ θ ≤ 2π, the following
equations can be obtained:

+∞∑
n=1

Amn (κn+ iκ0τXmn+ iωFmn)
cos[κn (z+h)]

cos(κnh)
+

4∑
b=1

Cmbiωeqmbz

−
igHκ0

2ω
cosh[κ0 (z+h)]

cosh(κ0h)
imJm

′ (κ0a) = 0.

(5.45)

For the gap region z ∈ S gap, by substituting Eqs. (5.19) to (5.23) into Eq. (5.16) and due
to the orthogonal operation, one obtains

+∞∑
n=1

AmnXmn
cos[κn (z+h)]

cos(κnh)
= 0. (5.46)
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Therefore, a system of equations can be derived from Eqs. (5.45) and (5.46):

S m (z) =
+∞∑
n=1

Amnζmn (z)+
4∑
κ=1

Cmκχmκ (z)+λm (z) = 0, (5.47)

where

ζmn (z) =

(κn+ iκ0τXmn+ iωFmn) cos[κn(z+h)]
cos(κnh) , z ∈ S net

Xmn
cos[κn(z+h)]

cos(κnh) , z ∈ S gap

, (5.48)

χmκ (z) =

iωeqmκz, z ∈ S net

0, z ∈ S gap

, (5.49)

λm (z) =

−
igHκ0

2ω
cosh[κ0(z+h)]

cosh(κ0h) imJm
′ (κ0a) , z ∈ S net

0, z ∈ S gap

. (5.50)

In Eq. (5.47), truncating the infinite series after Nth terms yields

S m (z) =
N∑

n=1

Amnζmn (z)+
4∑
κ=1

Cmκχmκ (z)+λm (z) = 0. (5.51)

For Eq. (5.51), by employing the least squares approximation, there is

0∫
−h

|S m(z)|2dz =min⇒

0∫
−h

S *
m
∂S (z)
∂Amn

dz = 0. (5.52)

Therefore, by substituting Eq. (5.51) into Eq. (5.52), a system of equations is obtained:

P1
m1,1 · · · P1

mn,1
...

. . .
...

P1
m1,l · · · P1

mn,l

P2
m1,1 · · · P2

mκ,1
...

. . .
...

P2
m1,l · · · P2

mκ,l

P3
m1,1 · · · P3

mn,1
...

. . .
...

P3
m1,4 · · · P3

mn,4

P4
m1,1 · · · P4

mκ,1
...

. . .
...

P4
m1,4 · · · P4

mκ,4





Am1
...

Amn

Cm1
...

Cmκ



∗

=



Qm1
...

Qml

0
...

0


, (5.53)

where

P1
mn,l =

0∫
−h

ζ*mnζmldz, P2
mκ,l =

0∫
−h

χ*
mκζmldz and Qm,l = −

0∫
−h

λ*
mζmldz. (5.54)

The coefficient matrixes PPP3 and PPP4 are determined from the chosen edge conditions in Eqs.
(5.41) to (5.44), and m = -M, ..., -1, 0, 1, ..., M; l = 1, 2, ..., N.
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As a result, the unknown constants Amn and Cmb can be calculated out by solving Eq.
(5.53), and the corresponding velocity potentials Φ j and structural displacements U, V and
W are obtained.

5.4 Convergence studies and model validation

5.4.1 Convergence studies

In order to verify the validity of the proposed analytical solutions, convergence and
comparative studies were carried out. In the eigenfunction expansion method, the solution
is theoretically correct and valid when the sum of the infinite series converges with respect
to increasing the number of series terms. In numerical processes, it is necessary to truncate
the terms up to a certain value with acceptable accuracy for the solution. Therefore, a
convergence analysis is essential for numerical simulations. Herein, we adopt the following
values for the parameters: H = 7 m, h = 200 m, a = 50 m, ts/a = 10−4, d1/h = 0, d2/(2a)
= 0.5, ν = 0.3 and τ = 1+1i. The shell bulk density has ρs/ρ = 1.2, and the nondimensional
elastic modulus of the shell η = E/(ρstsh) is taken as 103. In addition, a wave-effect
parameter Cw = g/(ω2h) is defined by Chwang (1983).

Concerning the truncated term N in Eq. (5.28), the wave force F is only determined by
the root numbers of the dispersion relationship Eq. (5.24) due to the orthogonality of eimθ.
These roots correspond to the non-propagating evanescent mode (Zhu and Mitchell, 2009).
Therefore, a control error ∆Er(N) with respect to N is defined as

∆Er (N) =
|FN+1−FN |

|FN |
. (5.55)

As shown in Fig. 5.4a, it can be observed that the variations of ∆Er(N) differ for different
wave frequencies, and the convergence speed is slower when the wave effect number is
larger. It is found that when N > 30, the maximum control error is less than 0.133% for all
cases. Numerically, the term generated by the wavenumber of the dispersion relationship
Eq. (5.24) is relatively small and is only associated with local waves near the cylinder
(Zhu and Mitchell, 2009).
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Fig. 5.4 Convergence analysis for truncated terms of N and M: (a) Variations of ∆Er(N) versus N;
(b) Variations of ∆Er(M) versus M.

Alternatively, in terms of the local waves near the cylinder, a control error ∆Er(M)
versus M is defined as

∆Er (M) =

∣∣∣∣∣∣ −d1∑
z=−(d1+d2)

2π∑
θ=0

(φ1−φ2)M+1−
−d1∑

z=−(d1+d2)

2π∑
θ=0

(φ1−φ2)M

∣∣∣∣∣∣∣∣∣∣∣∣ −d1∑
z=−(d1+d2)

2π∑
θ=0

(φ1−φ2)M

∣∣∣∣∣∣
, (5.56)

and the values of ∆Er(M) are presented in Fig. 5.4b. However, it can be observed that
if the wave effect number is smaller, the convergence speed of the term M is slower, but
when M > 20, the relative errors are near 0 for the whole cases. As a result, in this study, it
is sufficient to take N = 31 and M = 20 to determine the imposed wave action on the net
cage.

5.4.2 Model validation

The present solutions were compared with the results obtained by Zhu and Mitchell (2009)
and Su et al. (2015) for the free water surface elevation around a rigid hollow cylindrical
shell. In Fig. 5.5a, the free surface elevation is plotted along θ = 0 for the case: ω = 1.2
rad/s, H = 2 m, h = 6 m, a = 10 m, d1/h = 0 and d2/(2a) = 0.1. The other parameters are
set as τ = 0 and η = 108 to guarantee that the structure is impermeable and extremely rigid.
In Fig. 5.5a, when the wave surface propagates from the inside of the cylinder (r < a) to
the outer region (r > a), there is a phase difference at r/a = 1 due to the obstruction of the

106



5.5 Results and discussions

0 1 2 3 4 5 6
r=a
(a)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

9
=
H

The Present model
Zhu and Mitchell (2009)
Su et al. (2015)

0 0.5 1 1.5 2 2.5
50a
(b)

0

1

2

3

4

5

6

jF
j=
[;

g
(H

=2
)a
2
]

The Present model (= = 0)
Zhao et al. (2011) (= = 0)
Park and Koo (2015) (= = 0)
The Present model (= = 1:432)
Zhao et al. (2011) (= = 1:432)
Park and Koo (2015) (= = 1:432)

Fig. 5.5 Model validations: (a) Normalised free water surface elevation variations ξ/H; (b) Nor-
malised horizontal wave force |F|/[ρg(H/2)a2].

circular wall, and there is a minor difference between the results of the present model and
aforementioned researchers.

In addition, comparisons about the horizontal wave force on a rigid floating porous cage
with the results of Zhao et al. (2011) and Park and Koo (2015) are illustrated in Fig 5.5b.
The parameters adopted that a = 0.15 m, d1 = 0, d2 = 0.3 m and h = 5 m. The modulus
of the horizontal wave force |F| is normalised by ρg(H/2)a2, and its tendency with the
nondimensional wave number κ0a is consistent with the data from the abovementioned
researchers. A minor discrepancy observed is because Zhao et al. (2011) and Park and Koo
(2015) introduced a thin and impermeable horizontal plate at the bottom of the cage.

5.5 Results and discussions

This section will identify some critical hydroelastic characteristics of net cages from the
simulated results of the current model. The discussions focus on the variation of wave
surface profile, the distribution of wave load and the corresponding structural deformation.
In this analysis, four case groups were designed with various wave effect parameters Cw

(Cases A), net porous effect parameters τ (Cases B), nondimensional net elastic modulus η
(Cases C) and relative cage diving depths d1/h (Cases D). The detailed parameter settings
are shown in Table 5.1. A sample metocean data presented by El-Reedy (2019) shows
that the maximum wave height is 7.2 m associated with the wave period 8 s for an annual
recurrence interval of 100 years for a particular offshore platform location, and the water
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Table 5.1 Case groups with different studied parameters (Study II).

Cases Cw τ η/103 d1/h

A1 0.04 1+1i 1 0
A2 0.06 1+1i 1 0
A3 0.08 1+1i 1 0
A4 0.12 1+1i 1 0

B1 0.08 1+1i 1 0
B2 0.08 2+2i 1 0
B3 0.08 3+3i 1 0
B4 0.08 4+4i 1 0

C1 0.08 1+1i 0.5 0
C2 0.08 1+1i 1 0
C3 0.08 1+1i 2 0
C4 0.08 1+1i 4 0

D1 0.08 1+1i 1 0
D2 0.08 1+1i 1 0.05
D3 0.08 1+1i 1 0.10
D4 0.08 1+1i 1 0.15

depth should be over 50 m or three times the cage height for the offshore fish cage (Chu
et al., 2020). As a result, we have taken H = 7 m and h = 200 m as the offshore condition
here. Furthermore, the adopted cage dimensions and structural parameters are taken from
the cases deployed in practice, that is, a = 50 m, ts/a = 10−4, d2/(2a) = 0.5 and ρs/ρ =

1.2. Here, to facilitate the description of the results, a cartesian coordinate (x = r cosθ and
y = r sinθ) is also used, i.e., the wave propagates in the positive direction of the x-axis, and
the central axis of the cage is still located at the z-axis of the coordinate.

5.5.1 Wave surface profiles

The contour maps of the free surface elevations around the cage during a wave period T
are presented in Fig. 5.6. The non-dimensional free surface elevation ξ/H is plotted in a
range of x/a = ±4 and y/a = ±4 using Eq. (5.30), and the area inside the black circle is
the Zone 2 (r/a < 1). It can be observed that the presence of the cage causes perturbations
to the wave surface. Fig. 5.7 shows the free surface elevations with time series of some
positions in Zones 1 and 2. Owing to the blocking effects and motions of the porous net,
the waves passing through the net interface will be affected by a certain lag in propagation
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Fig. 5.6 Variations of free water surface elevations ξ around a cylindrical net cage over time: (a)
t/T = 0; (b) t/T = 1/4; (c) t/T = 1/2; (d) t/T = 3/4, Case A3.

as compared to the waves outside the cage, and the amplitude of the transmitted wave
passing through the cage also has a significant attenuation.

On the other hand, the amplitude of the wavefield is contoured in Figs. 5.8 to 5.10.
Due to the superposition of the incident waves and scattered wave, the wave amplitude is
distributed in the form of an arc-shaped band. There are some leaf-like areas where the
water surface oscillations are enhanced or weakened significantly in front of the windward
side of the cage. Inside the cage and near its leeward side, the wave energy is dissipated
to the greatest extent, and a long "wake area" is generated behind the cage, in which the
wave amplitude is severely attenuated. Under different wave frequencies (referring to Fig.
5.8), these arc-shaped bands are widened as Cw increases, and the distribution of those
leaf-like areas is also different. However, if the porosity increases (seen in Fig. 5.9) and
the stiffness decreases (seen in Fig. 5.10) for the net cage, its disturbance to the wave field
will be weakened.
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Fig. 5.7 Variations of normalized free water surface elevations ξ/H with time series for different
positions in zones 1 and 2, Case A3.

Fig. 5.8 Amplitudes of free surface elevations ξa around a cylindrical net cage with various wave-
effect parameters Cw: (a) Cw = 0.04; (b) Cw = 0.06; (c) Cw = 0.08; (d) Cw = 0.12, Cases A1–A4.
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Fig. 5.9 Amplitudes of free surface elevations ξa around a cylindrical net cage with various porous
effect parameters τ: (a) τ = 1+1i; (b) τ = 2+2i; (c) τ = 3+3i; (d) τ = 4+4i, Cases B1–B4.
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Fig. 5.10 Amplitudes of free surface elevations ξa around a cylindrical net cage with various
nondimensional elastic modulus η: (a) η = 0.5×103; (b) η = 1×103; (c) η = 2×103; (d) η = 4×103,
Cases C1–C4.
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Fig. 5.11 Free surfaces and dynamic responses of a cylindrical net cage over time: (a) t/T = 0; (b)
t/T = 1/4; (c) t/T = 1/2; (d) t/T = 3/4, Case A3.

5.5.2 Structural dynamic responses

Fig. 5.11 shows the dynamic response of the net cage over time. The colour on the cylinder
represents the values of the nondimensional pressure drop ∆p/(ρgh) on the net interface
(positive when inward and negative when outward) as calculated from Eq. (5.27). The
windward side of the cylinder obviously has higher pressure differences at the time of
one-quarter or three-quarter period. When compared to the bottom part, the wave load near
the upper part of the cage is also greater. This means that the wave has a more significant
effect when it is near the free water surface. It is noted that because the small-amplitude
wave theory simplifies the free water surface to the mean water level as the boundary, it
is seen that the part of the cylinder exposed above the wave surface is still imposed the
pressure action.

In order to investigate the spatial distribution of structural displacements and hydrody-
namic loads, the amplitudes of these variables are contoured in Fig. 5.12, where half of the
circumferential scale of the cage (π ≤ θ ≤ 2π) is plotted due to symmetry. Owing to the
edge constraint condition, the axial and circumferential displacements of the cage vanish
at z/h = 0, but the radial displacement and pressure differences are maximum due to strong
surface waves. For the axial displacements, radial displacements and pressure drops, their
peak values are all at θ/(2π) = 0.5 and 1 (windward and leeward sides). Nevertheless, two
peak values of the tangential displacements occur near the positions of θ/(2π) = 0.608 and
0.78.

Finally, the structural deformations are illustrated in Figs. 5.13 to 5.16. From Fig.
5.13, it can be observed that the short wave is more predominant near the free surface, but
the wave action is stronger in deeper water for the long wave. In addition, the structural
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Fig. 5.12 Spatial contours of (a) Axial displacement amplitude Ua; (b) Circumferential displacement
amplitude Va; (c) Radial displacement amplitude Wa; (d) Pressure drop amplitude ∆pa, Case A3.

motion exhibits different frequency responses. With a higher opening ratio of the net, the
wave scattering will be weakened, as shown in Fig. 5.9. According to Eq. (5.27), this
results in the reduction of wave loads acting on the cage, and thus the cage deformations
are reduced (Fig. 5.14). However, the area where the pressure difference points outward
(positive values) become larger on the windward side. Similarly, a stiffer cage can enhance
wave scattering (Fig. 5.10), and the loss of fluid momentum will increase as interacting
with it. Therefore, in Fig. 5.15, although a low magnitude of η will increase the flexibility
of the net, the corresponding wave action is decreased. In Fig. 5.16, when the cage is
submerged to a deeper depth, the wave effect will gradually become minimal, resulting in
the wave actions and structural deformations been suppressed significantly. This justifies
that the submergence of the cage into a deeper water depth is beneficial to avoid the strong
impact due to surface waves.

5.5.3 Parametric studies

In this section, the effects of variable wave and structural parameters on the hydrodynamic
forces are investigated. Similar to Mandal and Sahoo (2016), two nondimensional ampli-
tudes about the horizontal wave force (KF) and the corresponding overturning moment to
the top of the cage (KM) are defined as here:

KF =
|F|
ρgaHh

and KM =
|Mo|

ρgaHh (d1+d2)
, (5.57)
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Fig. 5.13 Pressure drops ∆p on a cylindrical net cage and corresponding deformations with various
wave-effect parameters Cw at t = T/2: (a) Cw = 0.04; (b) Cw = 0.06; (c) Cw = 0.08; (d) Cw = 0.12,
Cases A1–A4.

Fig. 5.14 Pressure drops ∆p on a cylindrical net cage and corresponding deformations with various
porous effect parameters τ at t = T/2: (a) τ = 1+1i; (b) τ = 2+2i; (c) τ = 3+3i; (d) τ = 4+4i,
Cases B1–B4.
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Fig. 5.15 Pressure drops ∆p on a cylindrical net cage and corresponding deformations with various
nondimensional elastic modulus η at t = T/2: (a) η = 0.5×103; (b) η = 1×103; (c) η = 2×103; (d)
η = 4×103, Cases C1–C4.

where the wave force F and the overturning moment Mo are defined in Eqs. (5.28) and
(5.29). In the current analysis, the considered design parameters include the wave-effect
parameter Cw and the cage’s parameters about the relative diameter 2a/L (L is the wave-
length), the relative diving depth d1/h, the slenderness ratio d2/(2a), the nondimensional
elastic modulus η and the porous effect parameter τ. The following parameters are kept
constant: H = 7 m, h = 200 m, ts = 0.005 m and ρs/ρ = 1.2.

I. Wave frequency effects

With the variations of wave frequency, the curves of KF and KM present several zero
points and peak points in Fig. 5.17. The magnification or vanishing of the force is due
to the destructive interference of the incident and scattered waves (Mandal et al., 2013).
Furthermore, increasing the porosity can reduce KF , but KM does not obey this situation.
From Fig. 5.14, when τ increases, the area on the windward side that bears a positive
pressure drop also increases, which may lead to the increase of the overturning moment.
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Fig. 5.16 Pressure drops ∆p on a cylindrical net cage and corresponding deformations with various
relative diving depths d1/h at t = T/2: (a) d1/h = 0; (b) d1/h = 0.05; (c) d1/h = 0.10; (d) d1/h = 0.15,
Cases D1–D4.
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Fig. 5.17 Influences of wave effect parameters Cw on nondimensional amplitudes of (a) Horizontal
wave forces KF ; (b) Overturning moments KM under various porous effect parameters τ, ts/a= 10−4,
d1/h = 0, d2/(2a) = 0.5 and η = 103.
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Fig. 5.18 Influences of relative diameters 2a/L of the cage on nondimensional amplitudes of (a)
Horizontal wave forces KF ; (b) Overturning moments KM under various porous effect parameters
τ, Cw = 0.08, d1/h = 0, d2/(2a) = 0.5 and η = 103.

II. Dimensions and locations of the cage

With respect to the influence of the cage diameter, these curves also show several similar
zero points and peak points in Fig. 5.18. It is observed that the magnitudes of KF and
KM reach zero as 2a/L is approximately 0.59 or 1.70, where the wave effect parameter
Cw keeps 0.08. As a result, from Figs. 5.17 and 5.18, it can be concluded that the ratio
between the cage diameter and the wavelength can determine the enhancement or vanish
of the wave force.

When the cage is submerged to a deeper depth, the structure will be subjected to a
weaker dynamic pressure due to surface waves. This is the main reason that contributed to
the decrease of the coefficients KF and KM versus the relative diving depth d1/h in Fig.
5.19. However, as the relative diving depth d1/h increases, the varying tendency of KF and
KM will also gradually slow down.

Fig. 5.20 shows the variations of the wave actions when the cage height increases from
zero to the water depth in a floating condition. These curves indicate that the values of KF

and KM will sharply increase to the peak values, then decrease gradually and approach
a constant value. This is because, although higher cage height can increase more forced
areas on the structure, the wave pressure in deeper water has already become relatively
minor.
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Fig. 5.19 Influences of relative diving depths d1/h of the cage on nondimensional amplitudes of (a)
Horizontal wave forces KF ; (b) Overturning moments KM under various porous effect parameters
τ, Cw = 0.08, ts/a = 10−4, d2/(2a) = 0.5 and η = 103.
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Fig. 5.20 Influences of slenderness ratios d2/(2a) of the cage on nondimensional amplitudes of (a)
Horizontal wave forces KF ; (b) Overturning moments KM under various porous effect parameters
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Fig. 5.21 Influences of nondimensional elastic modulus η of the cage on nondimensional amplitudes
of (a) Horizontal wave forces KF ; (b) Overturning moments KM under various porous effect
parameters τ, Cw = 0.08, ts/a = 10−4, d1/h = 0 and d2/(2a) = 0.5.

III. Structural stiffness and porous effects

Fig. 5.21 illustrates that the flexibility of the net has a significant influence on the wave
load when η is less than 5×103. The tendency of KF and KM will increase to the peak and
decrease slowly until it remains stable. This scenario is explained in the aforementioned
section. The magnitude of the pressure drop ∆p on the cage will be greater with the
increased structural stiffness, and the interference of the displacement of the net on the
wavefield has been relatively minor when it is extremely rigid.

In Figs. 5.22 and 5.23, the influence of the real part τr (porous resistance) and the
imaginary part τi (fluid inertia) of the porous effect parameter τ is discussed. An increase in
τr will decrease KF , but KM will not always decrease under different values of τi. However,
for different τr, both coefficients will increase to peaks as τi increases, and then begin to
decrease. Therefore, different properties are revealed for the horizontal wave force and the
overturning moment with respect to the porous resistance effect.

5.6 Conclusions

The hydroelastic behaviour of the submersible cylindrical fish net cage interacting with
waves in offshore deep water site was investigated in detail through the semi-analytical
solutions. The fish cage net was treated as a porous medium membrane and the motion
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Fig. 5.22 Influences of porous resistance parameters τr of the cage on nondimensional amplitudes of
(a) Horizontal wave forces KF ; (b) Overturning moments KM under various fluid inertia parameters
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Fig. 5.23 Influences of fluid inertia parameters τi of the cage on nondimensional amplitudes of
(a) Horizontal wave forces KF ; (b) Overturning moments KM under various porous resistance
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of the cage is governed by the membrane vibration equation of the cylindrical shell. The
hydrodynamic model is expressed by the potential flow theory, and the solution of the
flow field is expanded into a Fourier-Bessel series. Finally, the particular solution of
the wave-cage interaction is obtained by matching the boundary conditions and the least
squares method.

Based on numerical examples, the following conclusions can be drawn:

i. The fish net cage causes a certain perturbation to the wave surface. On the windward
side of the cage, the wave amplitudes are distributed in arc-shaped band regions
due to the superposition of incident waves and scattered waves, and there are some
leaf-like regions within enhanced perturbations to waves. Besides, a wake-like
area will appear behind the leeward side of the cage to attenuate the wave energy
significantly.

ii. Increasing the porosity and flexibility of the net can suppress wave scattering and
the hydrodynamic action.

iii. The wave impact and the corresponding structural dynamic responses are more
significant near the mean water level, so submersible cages are recommended to
avoid strong wave surface loads and excessive structural deformations.

iv. The cylindrical net chamber will produce critical dynamic responses at specific wave
frequencies, and the horizontal wave forces and overturning moment that the net
cage bears vanish under the specific ratios of the cage diameter to the wavelength.

The findings from this study provide a better understanding of the hydroelastic char-
acteristics of fish net cages and the feasibility of offshore aquaculture. Nevertheless, the
hydrodynamic model and theoretical formulation presented herein cannot handle the non-
linear effects of waves and the quadratic porous flow theory. Furthermore, the membrane
theory of cylindrical shells also has limitations when dealing with complex constraint
conditions. In future studies, these problems will be tackled. Moreover, the interaction
among multiple fish net cages in waves will be studied.
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Hydroelastic interactions between waves and an array of
submersible flexible fish cages

Abstract: In this study, a semi-analytical solution is developed to investigate the wave
interference and corresponding dynamic responses of an array of submersible flexible fish
cages. The net chamber is modelled as a perforated cylindrical shell, and the penetration
flow through the cage interface is described by a porous medium model. Based on the
potential flow theory, the solution to this physical problem is expanded as a series of eigen-
functions in the local coordinate system of each cage, and the scattered wave potentials
generated by all cages are superimposed wherein Graf’s addition theorem is employed
for the coordinate transformation. The mean wave drift effect is also explored, which is a
nonlinear phenomenon derivable from the first-order solution. The results indicate that
the interference of waves is determined by wavenumbers, cage spacings or net porosities,
and significant wave responses are manifested near the top part of the cage. Additionally,
the first-order wave force vanishes at a ratio of cage diameter to wavelength = 0.59, and,
along the direction of wave incidence, the rear cages experience opposite mean wave drift
loads relative to those on the front cages. These studies provide benchmark results for
understanding the hydroelastic characteristics of multi-cage systems.

Keywords: Fish cage array; Hydroelastic interaction; Wave interference; Porous medium
model; Shell-membrane theory; Eigenfunction expansion
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6.1 Introduction

Marine aquaculture has become an essential contributor to the world’s fish supply chain and
creates enormous economic value. According to DNV (2021), global marine aquaculture
production is predicted to increase by 155% from 2020 to 2050. However, accompanied
by this growth trend, nearshore fish farms have almost reached their production capacities,
and further expansion is difficult due to competing users and environmental pressures.
Thus, aquaculture operators are considering moving their farms to offshore sites where
there are abundant space, more pristine water and deeper water columns for better waste
disposal (Gentry et al., 2017). Data from FAO (2020a) also indicate that the proportion
of the finfish production capacity offshore will increase relative to the sheltered one from
2020. Against this backdrop, relevant offshore fish farming techniques are gaining traction
in research. An offshore fish farm comprising multiple circular or rectangular cages is an
ideal approach, but how to decide the optimal fluid-structure parameters and array layout is
a topic worthy of attention. For example, flow conditions or different spacings among the
cages may cause interactions among the wakes from individual cages, leading to stronger
combined water blockage and more intensive velocity reduction within the cage array
(Klebert et al., 2013). Similarly, wave interference due to the superposition of scattered
waves induced by individual cages also results in changes in the wave energy around the
array. Therefore, proper modelling is required to simulate the hydroelastic behaviour of
such systems.

Abundant and advanced theories underpin the development of numerical techniques for
predicting the hydroelastic behaviour of net cages. Generally, a fish cage net is assumed
not to provide bending stiffness, so it is usually modelled as a massed node-spring model
(Chen et al., 2021; Zhao et al., 2008) or a finite element model with truss elements (Li
et al., 2013a) where the hydrodynamic loads are evaluated by the Morison equation or the
screen-type method. These numerical techniques are also employed in cases with multiple
cages (Liu et al., 2022; Xu et al., 2013b; Zhang et al., 2021). Nonetheless, the flow pattern
around the cages cannot be captured, especially the water blockage effect that may be
enhanced in the cage array. Accordingly, fluid-structure coupling algorithms using CFD
models have been also established in some works of literature (Cheng et al., 2022; Martin
et al., 2021; Yao et al., 2016), but this is accompanied by tremendous computational time
for some full-scale cases. In view of this, hybrid analytical-numerical approaches may be
a more practicable and promising solution.

A net-type structure may be considered a porous medium macroscopically, and the
potential flow theory has been widely applied to determine wave-porous structure inter-
actions. Chwang (1983) proposed a theoretical model of the wavefield generated by a
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porous wavemaker in which Darcy’s law was introduced to dampen the wave. Yu and
Chwang (1994) investigated wave diffraction due to a circular porous barrier using the
eigenfunction-expansion method. Following these studies, Su et al. (2015) and Mandal
and Sahoo (2016) derived solutions for interactions between waves and a single flexible
net cage in which the net chamber was simplified as a one-dimensional beam or string
to describe its transverse deflection, but the latter also considered the deformation of the
bottom net plate modelled as a two-dimensional membrane. Ma et al. (2021) extended
their work to a submersible cage with mooring systems. Furthermore, Ito et al. (2014)
developed a hybrid method to calculate the wave force on a cube net cage wherein the
far-field wave was expressed in a Fourier-Bessel series, and the boundary element method
(BEM) was utilised for the ambient waves. The net of the cube cage was modelled as a
perforated membrane governed by the Helmholtz equation.

Nevertheless, in the above analysis, it may be oversimplified for the modelling of net
chambers because the motion of the net should be a three-dimensional problem, and stress
variations caused by structural deformations were ignored. Strand and Faltinsen (2020)
derived a solution for the dynamic structural stress induced by waves for a closed fish cage,
but the analysis was limited to a 2-D case modelled as a flexible beam. Flügge (1973)
demonstrated the constitutive relation in three-dimensional shell structures analytically
based on the membrane theory and the bending theory, respectively, and the former
assumed that the thin shell structure cannot provide bending stiffness. Lee et al. (1993)
and Belubekyan et al. (2017) elaborated on particular solutions for the free vibration of a
cylindrical shell by employing the two theories. Ji et al. (2019) proposed the first-order
solution of a vibrating cylindrical shell filled with fluid, and Guo et al. (2017) simulated
the vibration and acoustic radiation of a cylindrical shell submerged in water by combining
the eigenfunction expansion method and BEM. Based on the aforementioned theoretical
studies, Ma et al. (2022) introduced the membrane theory of shells to describe the dynamic
response of net cages under ocean wave excitation. However, only a single cage was
considered in their study, although multi-cage systems have been commonly used in the
aquacultural industry.

In terms of multiple structures in waves, the Kagemoto and Yue (1986) interaction
theory provides an exact solution to the wavefield around multiple impermeable cylinders
by using the eigenfunction expansion and Graf’s addition theorem. This theory was applied
in the interactions between waves and a group of floating rigid porous cages (Park and Koo,
2015; Park et al., 2010). For flexible structures, Zheng et al. (2020b) investigated the wave
response of an array of floating porous elastic plates, and Selvan et al. (2021) extended the
work of Mandal and Sahoo (2016) to a system of multiple flexible fish cages. Recently, the
application of other numerical methods in this field has also received much attention. Wang
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and Wu (2007) proposed a time domain analysis method for second-order wave diffraction
around an array of cylinders based on the finite element method. Li et al. (2011) employed
the scaled boundary finite element method (SBFEM) to solve the dynamic response of
a single pile when interacting with waves, and Li et al. (2013b) extended the work to
multiple piles with arbitrary cross-sections and layouts. Gharechae and Ketabdari (2022)
developed a BEM-based solution for an array of aquaculture cages. Both the SBFEM and
BEM can reduce the spatial dimension of the studied problem by one (Li et al., 2015). In
addition, Chen et al. (2011) proposed the null-field boundary integral equation method
(BIEM) for wave diffraction among multiple porous cylinders.

The abovementioned literature and methodologies suggest that the porous medium
theory and continuum vibration equations provide a theoretical basis for developing
hydroelastic solutions to wave-cage interaction, and the interference of waves among
multiple cages can be realised by the Kagemoto and Yue (1986) interaction theory or
solved numerically. However, there are several research gaps. First, the pivotal factors
determining the effects of wave interference in fish cage arrays have not been systematically
investigated and understood. Second, the model assumption of oversimplifying the net
chamber as a single string or beam may be unreasonable in some of the aforementioned
analytical solutions (Mandal and Sahoo, 2016; Su et al., 2015). Moreover, only limited
research studies on the mean drift loads of waves acting on fish net cages are available,
and they are less well understood.

In this paper, a semi-analytical solution is derived based on the potential flow theory
and membrane theory of shells to ascertain the hydroelastic characteristics of an array of
submersible flexible cylindrical open-net cages. It extends the work of Ma et al. (2022)
from the case of a single cage to multiple cages with arbitrary dimensions, layouts and
incident wave directions, and the mean wave drift loads are introduced as well. The overall
layout of this paper is as follows: Section 6.2 elaborates on the problem configuration, and
the corresponding method of solutions is outlined in Section 6.3. The convergence analysis
and model validation to support the proposed semi-analytical solution are established in
Section 6.4. Section 6.5 presents the numerical results, including the wavefield distribution,
the dynamic responses of the cages and some parametric studies. Finally, key findings and
subsequent research directions are summarised in Section 6.6.
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6.2 Problem definition, assumption and theoretical for-
mulation

A series of submersible cylindrical cages with the numbers j = 1, 2, ..., NC are considered
as shown in Fig. 6.1a. A global Cartesian coordinate system (x− y− z) is established, in
which the mean water level is at z = 0, and the incident wave propagates in the direction
with an angle β with respect to the positive x-axis. Several local coordinate systems
(r j− θ j− z) are established in the cages’ centres. In the local coordinate system of the kth
( j = k) cylinder, the cylindrical coordinates of any point are (rk, θk,z), and (R jk,α jk) is the
polar coordinate of the centre for the kth cylinder in the local coordinate systems of other
cylinders ( j = 1, 2, ..., NC, j , k). As illustrated in Fig. 6.1b, in a finite water depth h,
each cage has a radius a j, an immersed depth d j

1 and a cage height d j
2.

The fluid in the wavefield is assumed to be irrotational and inviscid. Therefore,
as shown in Fig. 6.1b, the velocity potential in the external region of all cylinders is
denoted as Φe, and the velocity potential in the internal region (r j < a j and 0 < z < h) of
each cylinder is Φi

j. As this paper focuses on the hydroelastic behaviour of an array of
suspended cylindrical porous nets in interaction with waves, the edges of these suspended
net chambers are assumed to be clamped on their top ends z = −d1

j, and the bottom ends
at z = −(d1

j+d1
j) are free traction.

The objective of the present study is to determine the hydroelastic behaviours (free
water surface elevations, hydrodynamic loads, structural dynamic responses, wave load,
etc.) of multiple flexible, submerged and cylindrical fish net cages under wave action,
including wave interference.

6.2.1 Governing equations

The wave is assumed to satisfy the small-amplitude wave theory with a circular frequency
ω and a wave height H. Therefore, the velocity potential at any point in the flow field can
be written as:

Φ(x,y,z, t) = Re
[
φ (x,y,z)e−iωt

]
, (6.1)

and the complex amplitude φ of the velocity potential satisfies the Laplace equation:

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 =
∂2φ j

∂(r j)2 +
1
r j
∂φ j

∂r j +
1

(r j)2
∂2φ j

∂(θ j)2 +
∂2φ j

∂z2 = 0, (6.2)
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Fig. 6.1 Sketches and parameter definitions of multiple cylindrical net cages: (a) Plan view; (b)
Isometric view.
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Fig. 6.2 A sketch and parameter definitions of a cylindrical shell.

where φ can be decomposed into the component φI caused by the incident wave and the
component φS caused by the scattered wave. The scattering potential is caused by wave
diffraction and wave radiation due to structural oscillations.

On the other hand, a novel method is proposed for modelling the fish cage. The net
chamber is equivalent to a perforated cylindrical thin shell, as shown in Fig. 6.2. According
to the Flügge (1973) membrane theory, the equations of motions for the shell element are
given by 

∇2U j+ 1+ν j

1−ν j
∂
∂z

(
∂U j

∂z +
1
a j
∂V j

∂θ j

)
+ 2ν j

(1−ν j)a j
∂W j

∂z =
1

cs j
∂2U j

∂t2

∇2V j+ 1
a j

1+ν j

1−ν j
∂
∂θ j

(
∂U j

∂z +
1
a j
∂V j

∂θ j

)
+ 2

(1−ν j)(a j)2
∂W j

∂θ j =
1

cs j
∂2V j

∂t2

1
a j
∂V j

∂θ j +
W j

a j + ν
j ∂U j

∂z +
a j

C j∆p j = −
ρs

ja jts
j

C j
∂2W j

∂t2

, (6.3)

where

∇2 =
1(

a j)2
∂2

∂
(
θ j)2 +

∂2

∂z2 and cs
j =

G j

ρs j . (6.4)

For each cage from j = 1, 2, ..., NC, U j is the axial displacement (positive along the
upward direction of z), V j is the circumferential displacement (positive in the direction of
increasing θ j), and W j is the radial displacement (positive when outward). The coefficient
C j = E jts

j[1−(ν j)2]−1, where E j is the elastic modulus of the shell, G j is the shear modulus
of the shell, ν j is the Poisson’s ratio of the shell, ρs

j is the shell bulk density, and ts
j is the

shell thickness. ∆p j is the first-order pressure drop acting normal to the shell surface.
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6.2.2 Boundary conditions

According to Dean and Dalrymple (1991), the kinematic boundary condition and the
dynamic boundary condition at the free water surface z = ξ are respectively linearised as

∂Φ

∂z
=
∂ξ

∂t
at z = 0, (6.5)

ξ = −
1
g
∂Φ

∂t
at z = 0. (6.6)

By combining Eqs. (6.5) and (6.6), the boundary at the mean water level has

∂2Φ

∂t2
+g
∂Φ

∂z
= 0 at z = 0. (6.7)

On the seabed, the slippery boundary condition is applied:

∂Φ

∂z
= 0 at z = −h, (6.8)

and the scattering potential satisfies the radiation condition at infinity from Sommerfeld
(1949):

lim
r j→∞

√
r j

∂ΦS , j
e

∂r j
± iκ0φ

S , j
e

 = 0. (6.9)

In the above equations, g is the gravity acceleration and κ0 is the incident wavenumber.

The fish cage net is treated as a porous structure, so the penetration flow on the net
interface is governed by the kinematic condition:

∂Φ
j
e

∂r j = iκ0τ j
(
Φ

j
i −Φ

j
e

)
+
∂W j

∂t
at r j = a j and −(d j

1+d j
2) ≤ z ≤ −d j

1. (6.10)

The dimensionless porous-effect parameter τ j of the porous medium is given by Yu and
Chwang (1994):

τ j =
τ0

j

κ0ts j
fr j+ i fi j(

fr j
)2
+

(
fi j

)2 = τr
j+ iτi j. (6.11)

in which τ0 j is the net porosity, and fr j and fi j denote the linearised porous resistance
coefficient and fluid inertia coefficient, respectively. The real part τr j represents the porous
resistance effect, and the imaginary part τi j is due to the fluid inertial effect. Moreover, the
continuity of velocity and pressure yields:

∂Φ
j
e

∂r j =
∂Φ

j
i

∂r j at r j = a j and −h ≤ z ≤ 0, (6.12)
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Φ
j
e = Φ

j
i at r j = a j and −h ≤ z ≤ −(d j

1+d1
2)∪−d j

1 ≤ z ≤ 0. (6.13)

For the edge constraints of the net chambers, the traction-free condition at the bottom
ends is given by Belubekyan et al. (2017):

∂U j

∂z
+
ν j

a j
∂V j

∂θ j +
ν j

a j W
j = 0 and

1
a j
∂U j

∂θ j +
∂V j

∂z
= 0 at z = −(d j

1+d1
2), (6.14)

and the clamped condition at the top ends satisfies

U j = 0 and V j = 0 at z = −d j
1. (6.15)

6.3 Derivation of the solutions

6.3.1 Fluid domain

Here, an innovative analytical approach to describing wave interference among multiple
cages is presented. The wavefield can be regarded as the superposition of scattered waves
from all cages and incident waves, and the scattered wave potentials due to each cage
are transformed in different local coordinate systems by Graf’s addition theorem, which
greatly facilitates the derivation of particular solutions.

In view of the governing equation Eq. (6.2) and the boundary conditions of Eqs. (6.7)
to (6.9), the velocity potential complex amplitude φe in the external region of the cages
can be sought in the following form:

φe = φ
I, j+φS

e , (6.16)

in which

φI, j = −
igH
2ω

cosh[κ0(z+h)]
cosh(κ0h)

eiκ0R j cos(Θ j−β)
+∞∑

m=−∞
imJm

(
κ0r j

)
eim(θ j−β), (6.17)

φS
e =

NC∑
j=1

+∞∑
m=−∞

+∞∑
n=0

A j
mnR1

j
m(κnr j) fn(z)eimθ j

, (6.18)

and the velocity potential complex amplitude φi
j in the internal region of each cage is

φi
j = φI, j+φ

S , j
i , (6.19)
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in which

φ
S , j
i =

+∞∑
m=−∞

+∞∑
n=0

B j
mnR2

j
m(κnr j) fn(z)eimθ j

. (6.20)

In the abovementioned equations, we have

R1
j
m(κnr j) =

Hm(κnr j)
Hm
′(κna j)

, R2
j
m(κnr j) =

Jm(κnr j)
Jm
′(κna j)

and fn(z) =
cosh[κn(z+h)]

cosh(κnh)
. (6.21)

Furthermore, in Eq. (6.17), R j and Θ j are the polar coordinates of each cylinder’s centre
in the global coordinate systems, and κns are obtained by following the dispersion relation:

ω2 = gκn tanh(κnh), (6.22)

in which κ0 is the positive real root of Eq. (6.22) when n = 0, and κns are the infinite
positive imaginary roots of Eq. (6.22) when n > 0. A j

mn and B j
mn are the unknown constants.

Jm is the first kind of Bessel function of the mth order, and Hm is the first kind of Hankel
function of the mth order.

In the local coordinate system of the kth cylinder, Graf’s addition theorem is invoked
according to Abramowitz and Stegun (1965):

Hm(κnr j)× eimθ j
=

+∞∑
l=−∞

Hm−l(κnR jk)× J−l(κnrk)× (−1)−l× eilθk × ei(m−l)α jk
. (6.23)

Notably, Eq. (6.23) is only valid when rk < R jk. Therefore, in the local coordinate system
of the kth cylinder, Eq. (6.18) can be rewritten as

φe
S ,k =

+∞∑
m=−∞

+∞∑
n=0

Ak
mnR1

k
m(κnrk) fn(z)eimθk +

NC∑
j=1, j,k

+∞∑
m=−∞

+∞∑
n=0

+∞∑
l=−∞

A j
lnY jk

mnl(κnrk) fn(z)eimθk ,

(6.24)
in which

Y jk
mnl

(
κnrk

)
=

Hl−m
(
κnR jk

)
Hl
′
(
κna j) Jm

(
κnrk

)
ei(l−m)α jk

. (6.25)

Owing to the velocity continuity in Eq. (6.12) and the orthogonality of cosh[κn(z+h)] over
−h ≤ z ≤ 0 and eimθ over 0 ≤ θ ≤ 2π, the following relationship is obtained:

Bk
mn−Ak

mn =

NC∑
j=1, j,k

+∞∑
l=−∞

A j
lnS jk

mnl, (6.26)
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where

S jk
mnl =

Hl−m
(
κnR jk

)
Hl
′
(
κna j) Jm

(
κnak

)
ei(l−m)α jk

. (6.27)

As a result, in the local coordinate system of the kth cylinder, Eq. (6.20) can also be
rewritten as

φi
S ,k =

+∞∑
m=−∞

+∞∑
n=0

Ak
mnR2

k
m(κnrk) fn(z)eimθk +

NC∑
j=1, j,k

+∞∑
m=−∞

+∞∑
n=0

+∞∑
l=−∞

A j
lnY jk

mnl(κnrk) fn(z)eimθk ,

(6.28)
and

φe
k −φi

k =

+∞∑
m=−∞

+∞∑
n=0

Ak
mnXk

mn fn(z)eimθk at r j = a j, (6.29)

where
Xk

mn = R1
k
m(κnak)−R2

k
m(κnak). (6.30)

According to Bernoulli’s equation, the dynamic pressure p is given by:

p = −ρ
∂Φ

∂t
−
ρ

2
(∇Φ · ∇Φ), (6.31)

where ρ is the water density, and the linearised form of the dynamic pressure p is

p = −ρ
∂Φ

∂t
= Re

[
−ρ
∂(φe−iωt)
∂t

]
, (6.32)

so the first-order pressure drop on each cage is defined as

∆p j = p j
e− p j

i = Re
[
iωρ

(
φ

j
e−φ

j
i

)
e−iωt

]
at r j = a j. (6.33)

As a result, the complex functions of the first-order wave force components in x-direction
and y-direction acting on each cage are respectively

Fx
j = iωρa j

−d1
j∫

−(d1
j+d2

j)

2π∫
0

(φe
j−φi

j)cos(π− θ j)dθ jdze−iωt, (6.34)

Fy
j = iωρa j

−d1
j∫

−(d1
j+d2

j)

2π∫
0

(φe
j−φi

j)sin(π− θ j)dθ jdze−iωt. (6.35)

At present, there is limited literature on mean wave drift forces acting on fish cages, so the
current study proposes a novel method to determine the mean wave drift forces. Although
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the developed model is based on the linear wave theory, the mean wave drift forces can
still be derived through the first-order solution. This is because the second-order potential
has no contribution to the time-averaged value as the second-order term (Faltinsen, 1993).
Therefore, the components of mean wave drift forces in x-direction and y-direction acting
on each cage are

Fx
j
= a j

−d1
j∫

−(d1
j+d2

j)

2π∫
0

(pe j− pi j)cos(π− θ j)dθ jdze−iωt

= a j

−d1
j∫

−(d1
j+d2

j)

2π∫
0

(pe
j
− pi

j)cos(π− θ j)dθ jdze−iωt,

(6.36)

Fy
j
= a j

−d1
j∫

−(d1
j+d2

j)

2π∫
0

(pe j− pi j) sin(π− θ j)dθ jdze−iωt

= a j

−d1
j∫

−(d1
j+d2

j)

2π∫
0

(pe
j
− pi

j) sin(π− θ j)dθ jdze−iωt,

(6.37)

where the overline is the time-averaged operator. According to Eq. (6.31), the time-
averaged dynamic pressure on each cage is

p j = −ρ
∂Φ j

∂t
−
ρ

2
(∇Φ j · ∇Φ j)

= −
ρ

2


[
Re

(
∂φ j

∂r j e−iωt

)]2

+

[
Re

(
1
a j
∂φ j

∂θ j e−iωt

)]2

+

[
Re

(
∂φ j

∂z
e−iωt

)]2


= −
ρ

4

{
Re

[
∂φ j

∂r j

(
∂φ j

∂r j

)∗]
+Re

[
1

(a j)2
∂φ j

∂θ j

(
∂φ j

∂θ j

)∗]
+Re

[
∂φ j

∂z

(
∂φ j

∂z

)∗]}
= −
ρ

4

∣∣∣∣∣∣∂φ j

∂r j

∣∣∣∣∣∣2+ 1
(a j)2

∣∣∣∣∣∣∂φ j

∂θ j

∣∣∣∣∣∣2+
∣∣∣∣∣∣∂φ j

∂z

∣∣∣∣∣∣2
 at r j = a j.

(6.38)

In order to facilitate the subsequent discussion of the results, the above wave forces are
normalised as

KFx
j =

∣∣∣Fx
j
∣∣∣

ρga jhH
, KFy

j =

∣∣∣Fy
j
∣∣∣

ρga jhH
, KFx

j
=

∣∣∣∣Fx
j
∣∣∣∣

ρga jhH
and KFy

j
=

∣∣∣∣Fy
j
∣∣∣∣

ρga jhH
. (6.39)
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Moreover, because of the boundary condition Eq. (6.6), the free surface elevations ξ are
given by

ξ = Re
(
iωφe−iωt

g

)
. (6.40)

6.3.2 Structural domain

For the governing equation Eq. (6.3) of the structural domain, the displacement components
can be written as

U j = Re

 +∞∑
m=−∞

Um
j (z)eimθ j

e−iωt


V j = Re

 +∞∑
m=−∞

Vm
j (z)eimθ j

e−iωt


W j = Re

 +∞∑
m=−∞

Wm
j (z)eimθ j

e−iωt


. (6.41)

in which the general solutions of U j
m, V j

m and W j
m can be expressed in the form:

U j
m(z) =

4∑
b=1

α
j
mbC j

mbeq j
mbz+

+∞∑
n=0

A j
mnγ

j
mnF j

mn fn1(z)

V j
m(z) =

4∑
b=1

β
j
mbC j

mbeq j
mbz+

+∞∑
n=0

A j
mnδ

j
mnF j

mn fn(z)

W j
m(z) =

4∑
b=1

C j
mbeq j

mbz+

+∞∑
n=0

A j
mnF j

mn fn(z)

, (6.42)

where
fn1(z) =

sinh[κn(z+h)]
cosh(κnh)

. (6.43)

C j
mb is the unknown constant determined by the boundary value conditions in Eqs. (6.14)

and (6.15). Furthermore, the determination of the unknown constants q j
mb, α j

mb, β j
mb and

γ
j
mb has been elaborated on by Ma et al. (2022).
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6.3 Derivation of the solutions

By substituting Eq. (6.42) into Eqs. (6.42) and (6.15) and applying the orthogonal
operation, one obtains the following four equations:

∑+∞
n=0 A j

mnE j
mn1+

∑4
b=1 C j

mbE j
mb1 = 0∑+∞

n=0 A j
mnE j

mn2+
∑4

b=1 C j
mbE j

mb2 = 0∑+∞
n=0 A j

mnE j
mn3+

∑4
b=1 C j

mbE j
mb3 = 0∑+∞

n=0 A j
mnE j

mn4+
∑4

b=1 C j
mbE j

mb4 = 0

, (6.44)

in which

E j
mn1 = γ

j
mnF j

mn fn1(−d1
k)

E j
mn2 = δ

j
mnF j

mn fn(−d1
k)

E j
mn3 = (a jκnγ

j
mnF j

mn+ imν jδ
j
mnF j

mn+ ν
jF j

mn) fn[−(d1
k +d1

k)]

E j
mn4 = (imγ j

mnF j
mn+a jκnδ

j
mnF j

mn) fn1[−(d1
k +d1

k)]

E j
mb1 = α

j
mbe−q j

mbd1
k

E j
mb2 = β

j
mbe−q j

mbd1
k

E j
mb3 = (a jα

j
mbq j

mb+ imν jβ
j
mb+ ν

j)e−q j
mb(d1

k+d1
k)

E j
mb4 = (imα j

mb+a jβ
j
mbq j

mb)e−q j
mb(d1

k+d1
k)

. (6.45)

6.3.3 Fluid-structure interactions

After obtaining the general solutions of the fluid domain and structural domain, the
unknown constants A j

mn can be determined only by the aforementioned boundary condition
Eqs. (6.10) and (6.13) to obtain the particular solution to this physical problem.

At the boundary rk = ak for the kth cage, by substituting Eqs. (6.1), (6.16), (6.17),
(6.24), (6.29), (6.41) and (6.42) into Eq. (6.10) and invoking the orthogonality manipula-
tion along the net region −(d j

1+d j
2) ≤ z ≤ −d j

1, one obtains

+∞∑
n=0

Ak
mn(κn+ iκ0τkXk

mn+ iωFk
mn) fn(z)+

4∑
b=1

Ck
mbiωeqk

mbz+

NC∑
j=1, j,k

+∞∑
n=0

+∞∑
l=−∞

A j
lnκnS jk

mnl fn(z)

−
igHκ0

2ω
cosh[κ0 (z+h)]

cosh(κ0h)
eiκ0Rk cos(Θk−β) im

eimβ Jm
′(κ0a j) = 0.

(6.46)
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Similarly, by substituting Eqs. (6.1) and (6.29) into Eq. (6.13) and utilising the orthogo-
nality operation along the gap region −h ≤ z ≤ −(d j

1+d1
2)∪−d j

1 ≤ z ≤ 0, one obtains

+∞∑
n=0

Ak
mnXk

mn fn(z) = 0. (6.47)

Therefore, Eqs. (6.46) and (6.47) can be described in a general form:

Zk
m(z) =

+∞∑
n=0

Ak
mnζ

k
mn(z)+

4∑
b=1

Ck
mbχ

k
mb(z)+

NC∑
j=1, j,k

+∞∑
n=0

+∞∑
l=−∞

A j
lnη

jk
mnl(z)+λk

m(z) = 0. (6.48)

in which

ζkmn(z) =

(κn+ iκ0τkXk
mn+ iωFk

mn) fn(z), −(dk
1+dk

2) ≤ z ≤ −dk
1

Xk
mn fn(z), −h ≤ z ≤ (dk

1+dk
2)∪−dk

1 ≤ z ≤ 0

χk
mb(z) =

iωeqk
mbz, −(dk

1+dk
2) ≤ z ≤ −dk

1

0, −h ≤ z ≤ (dk
1+dk

2)∪−dk
1 ≤ z ≤ 0

η
jk
mnl(z) =

κnS jk
mnl fn(z), −(dk

1+dk
2) ≤ z ≤ −dk

1

0, −h ≤ z ≤ (dk
1+dk

2)∪−dk
1 ≤ z ≤ 0

λk
m(z) =


−

igHκ0
2ω

cosh[κ0(z+h)]
cosh(κ0h)

eiκ0Rk cos(Θk−β) im

eimβ Jm
′(κ0a j), −(dk

1+dk
2) ≤ z ≤ −dk

1

0, −h ≤ z ≤ (dk
1+dk

2)∪−dk
1 ≤ z ≤ 0

.

(6.49)

By applying the least squares approximation, one gets

0∫
−h

∣∣∣Zk
m (z)

∣∣∣2dz =min⇒

0∫
−h

Zk
m(z)*∂Z

k
m (z)

∂Ak
mn

dz = 0. (6.50)

By truncating the infinite series terms outside the range of n = 1 to N, m = −M to M and
l = −M to M in Eq. (6.48) and substituting it into Eq. (6.50), one obtains a system of
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6.3 Derivation of the solutions

equations for m = −M to M:

N∑
n=0

Ak
mn

*
0∫
−h

ζkmn
*
ζkm0dz+

4∑
b=1

Ck
mb

*
0∫
−h

χk
mb

*
ζkm0dz

+

NC∑
j=1, j,k

M∑
l=−M

N∑
n=0

A j
ln

*
0∫
−h

η
jk
mnl

*
ζkm0dz = −

0∫
−h

λk
m

*
ζkm0dz

...

N∑
n=0

Ak
mn

*
0∫
−h

ζkmn
*
ζkmNdz+

4∑
b=1

Ck
mb

*
0∫
−h

χk
mb

*
ζkmNdz

+

NC∑
j=1, j,k

M∑
l=−M

N∑
n=0

A j
ln

*
0∫
−h

η
jk
mnl

*
ζkmNdz = −

0∫
−h

λk
m

*
ζkmNdz

. (6.51)

It can be found that each cage from j = 1 to NC must satisfy Eq. (6.44) and Eq. (6.51), so
the unknown constants A j

mn and C j
mb can have closed-form solutions.

Consequently, an overall matrix equation with respect to the constants A j
mn and C j

mb

can be expressed as

OOO1 PPP2 · · · PPPNC−1 PPPNC

PPP1 OOO2 · · · PPPNC−1 PPPNC

...
...
. . .

...
...

PPP1 PPP2 · · · OOONC−1 PPPNC

PPP1 PPP2 · · · PPPNC−1 OOONC





AAA1

AAA2

...

AAANC−1

AAANC


=



QQQ1

QQQ2

...

QQQNC−1

QQQNC


, (6.52)

where the submatrix in Eq. (6.52) is

OOOk =


OOOk
−M

. . .

OOOk
M

 , PPP j =


PPP j
−M,−M · · · PPP j

−M,M
...

. . .
...

PPP j
M,−M · · · PPP j

M,M

 ,
AAA j =

[
AAA−M

j · · · AAAM
j
]H
, QQQ j =

[
QQQ−M

j · · · QQQM
j
]T
,

(6.53)
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and

OOOk
m =



0∫
−h
ζkm0
∗
ζkm0 · · ·

0∫
−h
ζkmN

∗
ζkm0

0∫
−h
χk

m1
∗
ζkm0 · · ·

0∫
−h
χk

m4
∗
ζkm0

...
. . .

...
...

. . .
...

0∫
−h
ζkm0
∗
ζkmN · · ·

0∫
−h
ζkmN

∗
ζkmN

0∫
−h
χk

m1
∗
ζkmN · · ·

0∫
−h
χk

m4
∗
ζkmN

E j
m01
∗

· · · E j
mN1

∗
E j

m11
∗

· · · E j
m41
∗

...
. . .

...
...

. . .
...

E j
m04
∗

· · · E j
mN4

∗
E j

m14
∗

· · · E j
m44
∗



,

PPP j
ml =



0∫
−h
η

jk
m0l
∗
ζkm0 · · ·

0∫
−h
η

jk
mNl
∗
ζkm0

...
. . .

...
0∫
−h
η

jk
m0l
∗
ζkmN · · ·

0∫
−h
η

jk
mNl
∗
ζkmN

0 · · · 0
...
. . .
...

0 · · · 0

0 · · · 0
...
. . .
...

0 · · · 0

0 · · · 0
...
. . .
...

0 · · · 0



,

AAAm
j =

[
A j

m0 · · · A j
mN C j

m1 · · · C j
m4

]
,

QQQm
j =

− 0∫
−h
λk

m
∗
ζkm0dz · · · −

0∫
−h
λk

m
∗
ζkmNdz 0 · · · 0

 .

(6.54)

Based on the above mathematical derivations, the distribution of the wavefield around
the net cage array and the corresponding dynamic responses of the cages can be obtained. In
this paper, we choose an array of cages with two rows by three columns for the discussion,
and the layout is illustrated in Fig. 6.3. A numerical code based on MATLAB language
has been developed for the simulated results.

6.4 Convergence studies and model validation

6.4.1 Convergence studies

For the eigenfunction-expansion method, the accuracy of the solution is acceptable only
when the series converges. Therefore, convergence studies had to be carried out to establish
the appropriate truncation terms N and M for use in the analysis. The convergence studies
adopted the constant parameters: H = 7 m, β = π/4, h = 200 m, a j = 50 m, ts

j/a j = 10−4,
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Fig. 6.3 Layout of an array of cylindrical net cages with two rows by three columns.

d1
j/h = 0.05, d2

j/h = 0.25, τ j = 1+1i, ν j = 0.3, ρs
j/ρ = 1.2, E j/(ρs

jgh) = 103 and sx/h =

sy/h = 0.1.

Fig. 6.4a shows the sum of the coefficients KFx
j from Eq. (6.39) for all cages versus the

truncated term N, in which the first-order wave force Fx
j in Eq. (6.34) is only determined

by the root number n of the dispersion relationship Eq. (6.34) due to the orthogonality of
eimθ. It can be seen that the solution is converged when N ≤ 40.

Alternatively, the mean wave drift force Fx
j
in Eq. (6.36) is dependent on both the

numbers of series terms n and m because of the existence of the nonlinear term. In the
convergence study of the truncated term M (Fig. 6.4b), where N is taken as 40 (referring
to Fig. 6.4a), the sum of the coefficients KFx

j
from Eq. (6.39) of all cages starts being

gradually stabilised when M is greater than 5. As a result, in the current study, it is essential
to take N = 40 and M = 10 to guarantee adequate accuracy and a reasonable computational
amount when determining the wave action on the net cage.

6.4.2 Model validation

For the model verification, we first compared our results with those obtained by Chen et al.
(2011) who employed the BIEM for the free water surface elevation amplitude ξa around
four rigid permeable cylinders, as shown in Fig. 6.5. ξa is the modulus of the complex
function in Eq. (6.40). The other constant parameters are H = 1, β = π/4, a j = 0.2, κ0a j =

π/2, h/a j = 5, d1
j/h = 0, d2

j/h = 1, τ j = 1, ν j = 0.3, ρs
j/ρ = 1.2, E j/(ρs

jgh) = 109 and
sx/h = sy/h = 0.4. It can be seen that the results agree very well. Note that E j/(ρs

jgh) =
109 is assumed in order to guarantee that the deformation of the cylinder can be neglected.
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Fig. 6.4 Convergence studies for the truncated terms N and M: (a)
∑NC

j=1 KFx
j versus N; (b)∑NC

j=1 KFx

j
versus M, N = 40. The other constant parameters are H = 7 m, β = π/4, h = 200 m, a j =

50 m, ts
j/a j = 10−4, d1

j/h = 0.05, d2
j/h = 0.25, τ j = 1+1i, ν j = 0.3, ρs

j/ρ = 1.2, E j/(ρs
jgh) = 103

and sx/h = sy/h = 0.1.

The close agreement of results demonstrates that the developed analytical solution can
accurately describe the wavefield distribution around multiple porous cylindrical structures.

Second, the present solution can also predict results in reasonably good agreement with
the solutions obtained by Park and Koo (2015) for the total wave force along the x-axis
direction on four rigid floating porous cages wherein the constant parameters are H = 1,
a j = 8.44 m, h = 200 m, d1

j/h = 0, d2
j/h = 0.175, ν j = 0.3, ρs

j/ρ = 1.2, E j/(ρs
jgh) =

109 and sx/h = sy/h = 0.347, and the first-order wave force Fx
j is from Eq. (6.34). Some

slight discrepancies are observed due to the presence of an impermeable bottom horizontal
thin plate in the work of Park and Koo (2015), especially for the condition with short waves
(seen in Fig. 6.6).

In addition, in order to validate the solution for the hydroelastic interactions between
waves and net cages, the present model is compared with the solutions of Ma et al. (2022)
for the wave force on a single flexible net cage. The constant parameters are taken as H = 7
m, β = 0, h = 200 m, a j = 50 m, ts

j/a j = 10−4, d1
j/h = 0, d2

j/h = 0.25, ν j = 0.3, ρs
j/ρ =

1.2 and E j/(ρs
jgh) = 103. For the cage layout in Fig. 6.3, the interaction among the cages

due to the wave interference effect is insignificant when considering a limiting scenario
where sx/h = sy/h = 105. At this time, the wave forces on each cage will be close to those
on the single cage. In Fig. 6.7, the coefficient KFx

j is calculated from Eq. (6.39). There
are no apparent differences between the current results and the results of Ma et al. (2022),
thus validating the present solution that describes FSI.
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Fig. 6.5 Comparison of the free water surface elevation amplitude ξa around four porous cylinders.
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Fig. 6.7 Comparison of the normalised wave forces KFx
j on an array of flexible porous cages

and a single flexible porous cage. The other constant parameters are H = 7 m, β = 0, h = 200 m,
a j = 50 m, ts

j/a j = 10−4, d1
j/h = 0, d2

j/h = 0.25, ν j = 0.3, ρs
j/ρ = 1.2, E j/(ρs

jgh) = 103 and
sx/h = sy/h = 105.

6.5 Results and discussions

In this section, some important hydroelastic characteristics of a fish cage array in waves
are discussed from the analytical solutions developed. In the sea trial examples, the cage
array is designed with a real scale practised in engineering. For the return period from 50
to 100 years, the sample metocean data in El-Reedy (2019) illustrate that the maximum
wave height is from 6.6 to 7.2 m associated with the wave period from 7.7 to 8.0 s. It is
also recommended that the fish cages be located at a site where the water depth is greater
than three times the cages’ height (Cardia and Lovatelli, 2015). To facilitate consecutive
discussions, several case groups with varied studied parameters are defined in Table 6.1,
and the constant parameters are adopted as H = 7 m, h = 200 m, a j = 50 m, ts

j/a j = 10−4,
d1

j/h = 0.05, d2
j/h = 0.25, ν j = 0.3, ρs

j/ρ = 1.2 and E j/(ρs
jgh) = 103.

6.5.1 Wave interference effects

Wave interference is caused by the overlapping and superposition of incident waves and
scattered waves generated by multiple cages in space, resulting in enhanced or weakened
fluid oscillations in some areas. By plotting the contour maps of the wave amplitude ξa,
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Table 6.1 Case groups with different studied parameters (Study III).

Cases β κ0h τ j sx/h = sy/h

A1 0 12 1+1i 0.1
A2 π/6 12 1+1i 0.1
A3 π/3 12 1+1i 0.1
A4 π/2 12 1+1i 0.1

B1 π/4 8 1+1i 0.1
B2 π/4 12 1+1i 0.1
B3 π/4 18 1+1i 0.1
B4 π/4 25 1+1i 0.1

C1 π/4 12 1+1i 0.1
C2 π/4 12 1+1i 0.2
C3 π/4 12 1+1i 0.3
C4 π/4 12 1+1i 0.4

D1 π/4 12 0 0.1
D2 π/4 12 1+1i 0.1
D3 π/4 12 2+2i 0.1
D4 π/4 12 3+3i 0.1

one can have a better understanding of the feature of this phenomenon. ξa is the modulus
of the complex function in Eq. (6.40).

Fig. 6.8 shows the amplitude distribution of the free water elevation around the net
cage array when incident waves propagate in different directions. It can be observed that
there are some "wake areas" on the leeward sides of the cages along the direction of wave
incidence where the wave amplitude is severely attenuated, especially for the rear cages. In
the inner regions of these cages, the wave amplitude also has different extents of reductions.

As shown in Fig. 6.9, if the incident wavelength is gradually reduced while the array
layout is maintained, the distribution of the wave surface exhibits a weaker perturbation.
This is because the diffraction effect of the wave becomes minor as the incident wavelength
becomes smaller relative to the interval among the cages. Conversely, if the spacing among
the cages is increased while maintaining a constant incident wavelength, the perturbation
is also weakened to an extent, as seen in Fig. 6.10. As a result, increasing the ratio of
wavelength to cage spacing can intensify the wave interference effects.

With regard to the porous effect of cages, an impermeable case reveals different
properties from permeable cases. In Fig. 6.11a, an apparent increase of the wave amplitude
occurs inside the impermeable cages, but the permeable cages are beneficial to dissipate
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Fig. 6.8 Contour plots of the free water surface elevation amplitude ξa around a 2×3 array of net
cages under different incident wave angles, (a) to (d): Cases A1 to A4.

the wave energy, as seen in Figs. 6.11b to 6.11d. As a result, porous fish cages are more
appropriate choices in industrial practice. Additionally, as the opening ratio of the fish
cage net increases, its disturbance to the wave surface will be minor as well.

From the above contour plots of the wave amplitude, it can be found that when the
wave interference effect is significant, the oscillation amplitude of the liquid inside the
cage is weakened to a certain extent, which is beneficial for fish to thrive. In low-energy
environments, more feed energy is available for fish growth rather than being wasted
compensating for swimming behaviour (Wiegerink et al., 2022).

6.5.2 Structural dynamic responses

For the structural dynamic response, the first-order pressure and mean pressure acting on
the cage can be calculated from Eqs. (6.32) and (6.38), and the displacements of the cages
are obtained from Eqs. (6.41) and (6.42). The amplitudes of these physical quantities are
the moduli of the corresponding complex functions.

Case B2 (β = π/4) is selected to discuss the dynamic behaviours of the net cages. The
deformed net cages and corresponding first-order pressure drop on the interface of each
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Fig. 6.9 Contour plots of the free water surface elevation amplitude ξa around a 2×3 array of net
cages under different incident wavelengths, (a) to (d): Cases B1 to B4.

Fig. 6.10 Contour plots of the free water surface elevation amplitude ξa around a 2×3 array of net
cages under different cage spacings, (a) to (d): Cases C1 to C4.
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Fig. 6.11 Contour plots of the free water surface elevation amplitude ξa around a 2×3 array of net
cages under different net porous effect parameters, (a) to (d): Cases D1 to D4.

cage are illustrated in Fig. 6.12 when time t is equal to half of the wave period, and the
overall displacements of the cages have been exaggerated to twice the scale. Critical wave
actions and dynamic responses mainly occur at the top part of the cages near the free water
surface, and the dynamic response of each cage has unequal phase differences.

The amplitude distribution of the first-order pressure drop on each cage is shown in
Fig. 6.13. For all cages, their foremost peak values of ∆pa

j are located around θ j/(2π)
= 0.625 (windward side) and z/h = -0.1, and the minor peaks are near the position of
θ j/(2π) = 0.125 (leeward side) and z/h = -0.925. However, for the time-averaged values
of the pressure drop ∆pa

j
on these cages (Fig. 6.14), the peaks appear closer to the top

of the cages, and their circumferential positions are also slightly different. Notably, the
mean wave drift loads acting on cages j = 4 and 5 are in the opposite direction to those
imposed on cages j = 1, 2, 3 and 4 (positive values indicate that the loads are pointed
towards the cages’ centres, while negative values mean that the loads are pointed away
from the cages’ centres). In other words, the mean drift effect of the waves drives the
front and rear cages closer to each other in the direction of incidence. This phenomenon
may be because the rear cages are affected by the transmitted waves passing through the
cages in the front. Therefore, the mooring pre-tension should be provided to suppress the
corresponding displacements in the design.
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Fig. 6.12 First-order pressure drop ∆p j on a 2×3 array of net cages with an exaggerated deformation
of twice the scale and the nearby free water surface (purple shaded), Case B2.

Finally, the amplitudes of the displacement components for all cages are contoured in
Figs. 6.15 to 6.17. At the top end of these cages, their axial displacement amplitudes Ua

j

and circumferential displacement amplitudes Va
j are both zero due to the edge constraint

Eq. (6.15). The major and minor peaks of Ua
j are around θ j/(2π) = 0.625 and 0.125,

respectively. However, the magnitudes of Va
j present peaks around θ j/(2π) = 0.27, 0.5,

0.75 and 0.97. As for the radial displacement amplitude Wa
j, its distribution is similar to

the amplitude contour plots of the first-order pressure drop ∆pa
j because the pressure drop

is the dominant action driving the radial deformation of the cage in Eq. (6.3).

6.5.3 Parametric studies

Parametric studies on the wave forces acting on the array of net cages are performed, which
are compared with the results from the case with a single cage as well. The parameters that
may significantly impact wave interference in the fish cage array are considered, including
the incident wave angle β, the incident wavenumber κ0, the porous resistance and fluid
inertial parameters of the net τr j and τi j, the cage radius a j and the spacings sx and sy

among these cages. The normalised wave force coefficients are calculated according to
Eqs. (6.34) to (6.37) and (6.39). The other parameters are controlled as H = 7 m, h = 200
m, ts

j = 0.005 m, d1
j/h = 0.05, d2

j/h= 0.25, ν j = 0.3, ρs
j/ρ = 1.2 and E j/(ρs

jgh) = 103

if there are no specific explanations.

Regarding the overall tendency, when the incident wave angle changes from 0 to π/2, it
is reasonable that the wave force components in the x-axis direction on the cages gradually
decrease and that the components in the y-axis direction manifest an increase, as indicated
in Fig. 6.18. For cage j = 3, its nondimensional wave force components KFx

j and KFx

j
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Fig. 6.13 Spatial contour plots of the amplitude of first-order pressure drop ∆p j
a on the interface of

each cage, Case B2.

Fig. 6.14 Spatial contour plots of the amplitude of time-averaged pressure drop ∆pa
j
on the interface

of each cage, Case B2.
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Fig. 6.15 Spatial contour plots of the amplitude of axial displacement Ua
j of each cage, Case B2.

Fig. 6.16 Spatial contour plots of the amplitude of circumferential displacement Va
j of each cage,

Case B2.
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Fig. 6.17 Spatial contour plots of the amplitude of axial displacement Wa
j of each cage, Case B2.

reach peak points when β/(2π) is 0.0205 and 0.106, and the nondimensional wave force
components KFy

j and KFy

j
of cage j = 4 present a peak point at β/(2π) = 0.241. In

addition, the peak points of the mean wave drift force coefficients KFx

j
and KFy

j
appear

when β/(2π) = 0.01025 and 0.189, respectively, for cage j = 6. Nevertheless, under varied
incident wave angles, the wave force coefficients of cage j = 1 are approximately consistent
with those of the single cage where no peak point is presented. This means that the other
cages are influenced significantly by the interaction among the multiple cages.

For all cages, the wave forces reach the maximum values in the range when κ0h is
less than 2 as shown in Fig. 6.19. Notably, the imposed first-order wave forces are all
zero at κ0h = 7.45. According to Mandal et al. (2013), the vanishing of the force is due to
the destructive interference of the incident and scattered waves, and this also corresponds
to the slosh modes inside the cylinder (Mackay, 2020). In this scenario, the mean wave
drift force is the dominant action. As κ0h increases, the wave interference effect is not
significant in the array because of a shorter wavelength relative to the spacing among the
cages, so there are no distinct differences in the wave forces acting on these cages in the
array and the single cage.

In Fig. 6.20, if the diameters of these cages in the array gradually increase at a constant
wavelength L, the interference effect of the waves is enhanced, resulting in significant
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Fig. 6.18 Normalised first-order wave forces: (a) Component KFx
j; (b) Component KFy

j and

normalised mean wave drift forces: (c) Component KFx

j
; (d) Component KFy

j
on each cage versus

varied nondimensional incident wave angles β/(2π). The other constant parameters are κ0h = 12,
ts

j/a j = 10−4, τ j = 1+1i and sx/h = sy/h = 0.1.
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Fig. 6.19 Normalised first-order wave forces: (a) Component KFx
j; (b) Component KFy

j and

normalised mean wave drift forces: (c) Component KFx

j
; (d) Component KFy

j
on each cage

versus varied nondimensional incident wavelengths κ0h, β = π/4, ts
j/a j = 10−4, τ j = 1+1i and

sx/h = sy/h = 0.1.
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Fig. 6.20 Normalised first-order wave forces: (a) Component KFx
j; (b) Component KFy

j and

normalised mean wave drift forces: (c) Component KFx

j
; (d) Component KFy

j
on each cage versus

varied relative diameters of the cages 2a j/L, β = π/4, κ0h = 12, τ j = 1+1i and sx/h = sy/h = 0.1.

differences in the wave force coefficients, especially for the mean wave drift forces. At this
time, the results of cage j = 2 are relatively closer to those of the single cage. For all cages,
the peaks of the first-order wave forces manifest in the range of relative diameters 2a j/L =

0.9 to 1.1, but the peaks of the mean wave drift forces fall within the scope of 2a j/L = 0.6
to 0.8. Notably, the phenomenon of the first-order wave force vanishing still occurs at a
specific ratio of 2a j/L = 0.59.

As observed from Figs. 6.21a and 6.21b, with respect to increasing the porous resistance
effect parameters τr j, the coefficients KFx

j and KFy
j always maintain a decreasing tendency.

The coefficients KFx

j
and KFy

j
rise to the maximum values and then start to decrease

thereafter in Figs. 6.21c and 6.21d. Furthermore, higher values of τr j can diminish the
perturbation effect caused by the cage array on the waves so that the wave actions on all
cages are closer. Alternatively, the first-order wave force shows an overall growth trend
versus the increased fluid inertial parameters τi j in Figs. 6.22a and 6.22b where two peak
points exist on the curves, but the mean wave drift forces are still predicted to reach the
maximum values and then gradually decline, as seen from Figs. 6.22c and 6.22d. It is
noteworthy that most cages in the array can withstand minor wave forces compared with
the single cage for greater τi j.
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Fig. 6.21 Normalised first-order wave forces: (a) Component KFx
j; (b) Component KFy

j and

normalised mean wave drift forces: (c) Component KFx

j
; (d) Component KFy

j
on each cage versus

varied porous resistance effect parameters of the net τr j, β = π/4, κ0h = 12, ts
j/a j = 10−4, τi j = 1

and sx/h = sy/h = 0.1.

The above parameter studies indicate that the wave forces are increased for some cages
and decreased for others in the array compared with those for the single-cage case due to
the interference effect of the waves. However, this manifestation is quite complex, so a
higher structural strength for the cages in an array is recommended to guarantee safety
performance and facilitate engineering design.

As illustrated in Figs. 6.23 to 6.26, to determine the optimal layout of the fish net cage
array, more extensive calculations are carried out to contour the functions of KFx

j, KFy
j,

KFx

j
and KFy

j
for each cage versus the cage spacings sx and sy, both of which are in the

range from 0.01L to L. It can be seen from Figs. 6.23 and 6.25 that cages j = 2 and 3 have
to withstand greater critical wave force components along the x-axis, but the magnitude of
cage j = 6 is relatively minor in most instances. Alternatively, for the wave actions along
the y-axis, the magnitude of cage j = 4 is more significant in most ranges, and the impact
on cage j = 6 is also weaker in Figs. 6.24 and 6.26.
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Fig. 6.22 Normalised first-order wave forces: (a) Component KFx
j; (b) Component KFy

j and

normalised mean wave drift forces: (c) Component KFx

j
; (d) Component KFy

j
on each cage versus

varied fluid inertial effect parameters of the net τi j, β = π/4, κ0h = 12, ts
j/a j = 10−4, τr j = 1 and

sx/h = sy/h = 0.1.

Fig. 6.23 Contour plots of the normalised first-order wave force component KFx
j on each cage as

a function versus relative cage spacings sx/L and sy/L, β = π/4, κ0h = 12, ts
j/a j = 10−4 and τ j =

1+1i.
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Fig. 6.24 Contour plots of the normalised first-order wave force component KFy
j on each cage as

a function versus relative cage spacings sx/L and sy/L, β = π/4, κ0h = 12, ts
j/a j = 10−4 and τ j =

1+1i.

Fig. 6.25 Contour plots of the normalised mean wave drift force component KFx

j
on each cage as

a function versus relative cage spacings sx/L and sy/L, β = π/4, κ0h = 12, ts
j/a j = 10−4 and τ j =

1+1i.
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Fig. 6.26 Contour plots of the normalised mean wave drift force component KFy

j
on each cage as

a function versus relative cage spacings sx/L and sy/L, β = π/4, κ0h = 12, ts
j/a j = 10−4 and τ j =

1+1i.

6.6 Conclusions

The interference effects and hydroelastic behaviours of an array of submerged flexible fish
net cages in waves were effectively investigated through semi-analytical solutions. The
wave-net cage interactions were determined based on the potential flow theory and porous
medium model, and the net chambers were modelled as cylindrical shells whose motions
were governed by the shell-membrane theory. The general solution to the wavefield and
structural portion was expressed in the form of a Fourier-Bessel series by an eigenfunction
expansion. The scattered wave potentials generated by each cage in the local coordinate
system were superimposed, and Graf’s addition theorem was employed for the coordinate
transformation. Finally, a closed-form solution to the present physical problem was
obtained by matching the corresponding boundary conditions and the least squares method.

In the study, the results, such as free water surface elevations, hydrodynamic loads
and structural deformations, were discussed for a 2×3 array of net cages under different
hydrodynamic and structural parameters. Moreover, the mean wave drift effect, a nonlinear
property derived from the first-order solution, was initially discussed. The key conclusions
are summarised as follows:
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i. On the leeward side of a porous cage array, there are wake-like regions along the
incident wave direction where the wave energy is severely dissipated.

ii. Increasing the wavenumbers, cage spacings and net porosities is beneficial to weaken
the interference effect of the waves in a net cage array.

iii. It is recommended to increase the strength of the top part of the cage where significant
hydrodynamic effects and corresponding dynamic responses manifest under wave
action.

iv. Along the direction of wave incidence, the rear cages will withstand opposite mean
wave drift loads compared to those imposed on the front cages. Therefore, the
mooring pre-tension can be considered to suppress the corresponding displacements.

v. The wave forces acting on net cages will have maximum peaks in the low-frequency
range of the waves.

vi. It is useful for practical engineering design that the first-order wave forces acting
on all cages in an array can be neglected at the specific ratio of cage diameter to
wavelength 2a j/L = 0.59.

The present study extended the theory of hydroelastic interaction between waves and
fish cages to the interference phenomenon of waves among multiple cages and the mean
drift effect of waves. Benefitting from most numerical computations being replaced analyt-
ically, the semi-analytical solutions could quickly determine the physical field information
at any spatial and temporal positions and were not limited by the scale of the studied case.
The introduction of the shell-membrane theory efficiently addressed oversimplification in
modelling fish cages, and Graf’s addition theorem facilitated the coordinate transforma-
tion of the scattered wave potential generated by each cage in different local coordinate
systems. As for the practical implications, the developed hydroelastic model may be an
efficient analysis tool for engineers designing offshore fish cage systems. By predicting the
distribution characteristics of the wave amplitude around cages, it facilitates identifying a
low-energy environment suitable for fish growth. The structural dynamic response analysis
and parametric studies of wave forces can be helpful to avoid the safety risks associated
with the strength failure of the cage. In addition, some benchmark results provided in the
present study can be applied for validating other numerical models. It is worth noting
that the current works still have certain limitations in engineering practice. For fish cages
designed in real sea conditions, more complex hydrodynamic phenomena need to be con-
sidered, such as higher-order Stokes waves, wave-current interactions, turbulence effects,
et cetera, and the cages are usually designed with arbitrary shapes to satisfy functionality.
These will be focused on and explored in future research studies.
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Chapter 7

Conclusions

This chapter revisits the research background, motivation and objectives of this Ph.D.
thesis. A general discussion addresses the main research outcomes of the three study
elements. Finally, some research limitations of the existing studies and future lines of work
are explored.

7.1 Research restatement

Due to the increasing global demand for aquatic products and the environmental pollution
and resource conflicts caused by nearshore aquaculture, the development of offshore fish
farming has inevitably become popular. Related emerging industries are consequently the
subject of much research. A review of the relevant literature reveals research gaps in the
field of hydroelastic interaction between waves and fish cages. An understanding of the
theoretical mechanism of this physical phenomenon and a summary of key natural features
will help engineers explore practical methods related to fish cage systems in offshore areas.
Therefore, the following research question is explored in this Ph.D. thesis: “what are the
hydroelastic behaviours of open-net fish cages under wave action?”.

The main objectives achieved by this research are as follows:

1. Analysis and understanding of the theoretical mechanism of the hydroelastic interac-
tion between waves and open-net fish cages;

2. Conceptualisation and development of an efficient hydroelastic analysis tool to
predict the wave response of fish cages;

3. Identifying the dynamic response characteristics of a fish cage under wave excitation
and the cage’s influence on the wavefield through numerical experiments.
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To achieve these objectives, a series of original studies have been completed to explore
the mechanism of wave-net cage interaction in this thesis. Semi-analytical approaches were
adopted to directly couple the governing equations of the fluid and structural domains, and
the closed-form solutions to the research problem were derived through the eigenfunction
expansion method. A complete numerical execution framework was developed and com-
pared to traditional numerical models. A part of the discretisation schemes was replaced
by the analytical form, which reduced computational requirements. The simulation results
also revealed some prime hydroelastic properties of the net cage.

7.2 General discussions and key findings

This Ph.D. study proposes a semi-analytical method to investigate the hydroelastic interac-
tion between waves and open-net fish cages. The research program has been divided into
several distinct activities. Initially, a theoretical framework of modelling and corresponding
methodology were developed to understand the interaction phenomena between waves
and fish cages (Chapter 4). However, the governing equations of the net chamber were
over-simplified. Therefore, the shell-membrane theory was introduced to overcome this
deficiency (Chapter 5). Finally, the model was extended to the case with multiple cages,
including the wave interference effects (Chapter 6). Convergence and comparative studies
validated the rationality of the developed model, and some key FSI features for fish cages
were identified through the simulation results.

7.2.1 An establishment for the semi-analytical solution

The first study element of the project was to determine the governing equations for the fluid
and structural domains, as well as the corresponding boundary value conditions (Chapter
4). The central technique was expressing the blocking effect of the fish cage net and the
influence of its motion on the flow conditions. It was necessary to incorporate the porous
medium model into the kinematic boundary conditions on the cage interface. Through
the eigenfunction expansion method, the general solution of the governing equation was
written as a Fourier Bessel series, and the closed-form solutions could be achieved by
matching the boundary conditions and applying the least squared method.

The simulation results in Study I indicated that an individual fish cage causes a certain
disturbance to the wave surface, but this effect becomes minor as the opening ratio of the
net increases. Moreover, the significant wave effect is observed near the top part of the
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cage, as indicated in the contour plots of the pressure drop distribution. The effect of short
waves is mainly concentrated at the mean water level.

Plots of the amplitude distributions of hydrodynamic loads and transverse deflections
along the cage height indicate that the cage manifests severe wave responses at specific
wave frequencies and that the mooring stiffness and axial tension of the cage affect these
distribution characteristics significantly. In addition, the dynamic response of the cage
gradually diminishes as the diving depth increases.

Parametric studies verified the effects of different hydrodynamic and structural pa-
rameters on the wave forces and overturning moments acting on the cage. Firstly, the
wave forces and overturning moments vanish at some specific ratios of cage diameter to
wavelength. As the cage draft and mooring stiffness increase, these values increase to a
peak and then diminish to a stable level. Increasing the axial tension and net opening ratio
of the cage also suppresses the wave action. Finally, the inertial effect of the fluid in the
porous medium model is nonnegligible.

7.2.2 Model updating by introducing the shell-membrane theory

A review of the literature on hydroelastic modelling of flexible fish cages revealed that
some of the proposed analytical solutions have simplified the motion of the net chamber
to a one-dimensional problem and neglected the stress variation in the net caused by
structural deformation. Therefore, in the second study element of the project (Chapter
5), shell-membrane theory was introduced to overcome this deficiency. The axial and
circumferential motion of the cage can be considered free vibration due to the inviscid
assumption of the fluid, but the radial displacement is mainly driven by the wave load. To
solve the governing equation of shell structures, one must determine the characteristic root
equations and the particular solution due to the inhomogeneous term.

In Study II, contour plots of the wave amplitude distribution around the cage indicated
that a distinct “wake region” appears near the leeward side of the cage, where wave energy
is significantly dissipated. Reducing the net opening ratio and flexibility of the cage
enhances the perturbation of the wavefield. There are also phase differences between the
propagating waves outside and inside the cage.

The updated FSI model can also predict the displacement distribution on the cage
surface in addition to the distribution of pressure drop. The cage exhibits different dynamic
response characteristics at different wave frequencies, and increasing the porosity and
flexibility of the fish cage net suppresses its deformation. Furthermore, consistent with the
findings in Study I, a submersible fish cage was suggested to avoid strong surface waves.
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The parametric studies in Study II yielded some similar conclusions to those in Study I,
but the porous effect parameters of the fish cage net were discussed further. The wave force
and overturning moment present different variations with the increased porous resistance
effect parameter under different fluid inertia effects, and peak points are predicted on the
curves of both wave force and overturning moment versus the fluid inertia parameter.

7.2.3 Wave interference effects in an array of fish cages

In practice, a fish farm usually consists of multiple fish cages to increase production, so it is
necessary to predict the hydroelastic interactions between waves and a fish cage array as in
Chapter 6. The wave interference effect can be described as the overlap and superposition
of the scattered waves generated by each individual cage in space. In the modelling
process, the scattered waves generated by each cage were described by a local coordinate
system located in the cage’s centre, and the coordinate transformation was performed using
Graf’s addition theorem. The kinematic boundary condition on the interface of the cage
requires information from the other cages, so the matrix equation coupling all cages can be
established directly. In addition, the present model directly provides the mean wave drift
force because the second-order solution has no contribution to the time-averaged values.

The wave amplitude distribution around the fish cage array also indicated that there
is a “wake-like” wave energy dissipation region on the cages’ leeward side. Increasing
the wave frequency, cage spacing and porosity of the net can effectively suppress the
wave interference effect, but such changes are not conducive to creating a low-energy
environment for fish to thrive. In addition, relative to permeable cages, impermeable cages
exhibit different wave amplitude distribution properties. Specifically, wave amplitude
increases significantly inside impermeable cages. The contour plots of the wave load on
the cage surfaces reveal that the mean wave drift loads acting on the rear cages are opposite
to those acting on the front cages along the incident wave direction.

Parametric studies indicated that the wave forces acting on the cages in the array have
maximum peaks in the low-frequency range of waves, and the wave forces are predicted to
be zero at a specific ratio of cage diameter to wavelength as discussed in Studies I and II.
Notably, the difference in wave force acting on an array of cages and a single cage mainly
depends on the ratio of cage layout spacing or cage dimension to wavelength and the net
porosity. Moreover, extensive calculations were performed to characterise wave forces as
a function of cage spacing, which contribute to determining the optimal layout of fish cage
arrays.
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7.3 Scientific contributions

It is nontrivial to analyse and understand the interaction between waves and fish cages.
The difficulty arises because the fish cage net is a permeable and flexible structure, and it
is very difficult to establish a realistic microscopic model due to computational limits. The
hydroelastic models developed in the previous literature currently have some limitations
in applications, and there is a large knowledge gap in the mechanistic studies related to
FSI in this field. The current Ph.D. thesis has not only provided innovations regarding the
fundamental theory and perspectives in relevant modelling techniques but also introduced
hydroelastic models that are suitable for offshore fish farming applications.

7.3.1 Implications in theoretical developments

One of the research focuses of this Ph.D. thesis is to expand the fundamental theory in
the field of wave-porous cage interaction. In Study I, extensive work was performed to
analyse the fish cages in arbitrary submerged positions, which improved the generalisability
of the model. Study II introduced the membrane theory of shells and relevant methods
of solutions, which addresses knowledge gaps in modelling the cage structure when
deriving the closed-form solution to wave-porous cage interactions. Study III systematically
investigated the mechanism of wave interference effects in fish cage arrays and proposed
an approach to calculate the mean wave drift force acting on the fish cage. These studies
offer significant contributions to the fundamental theory and serve as a basis for future
work in this field.

Analytical methods can be used to reveal and understand the nature of wave-cage
interactions. The three previously discussed studies indicate that fluctuation solutions all
consist of infinite superpositions of harmonic function modes, and convergence analysis
can effectively address the influence of these decoupled modes on the results. In addition,
the boundary conditions directly determine the uniqueness of the solution for the studied
object in the mathematical derivation. However, the number of unknowns is more than
the number of algebraic equations in Eqs. (4.30), (5.35) and (6.32). Therefore, there is no
ideal closed-form solution to the existing research question, and the least squared method
gives only an optimal approximation.
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7.3.2 Implications in engineering practice

The present Ph.D. thesis directly delivers a closed-form solution to the research problem
rather than an approximate solution derived by interpolation-based numerical methods.
Compared to numerical solutions, analytical solutions, consisting of a series of functions
and mathematical operators, can more efficiently predict the field distribution at any lo-
cation and time with better accuracy. This precision is not limited by a discrete scale.
Because the existing model is based on linear theory, it does not require excessive numer-
ical computations to solve large coupling matrix equations directly instead of utilising
iterative methods, and computational instability can also be avoided when performing the
simulation.

Traditional numerical models do have better generalisability in engineering problems.
However, in applications, model validations are often required due to the issue of numerical
precision, while analytical solutions can directly give the most accurate results using the
same control equations and boundary conditions. Therefore, the semi-analytic model
proposed in this thesis may provide benchmark results for validating other numerical
models.

Feasibility studies of offshore fish farming are still being explored. This thesis provides
an effective analytical tool for engineers designing fish cage systems. From the simulation
results, some crucial hydroelastic mechanisms and characteristics of the fish cage under
offshore wave conditions are summarised. This work provides information that can be
applied to the future development of offshore fish cage systems.

Finally, due to the introduction of porous medium models, the developed semi-
analytical solution can not only predict the hydroelastic behaviour of fish cages but also be
applied to other porous structures interacting with waves. For example, arranging floating
breakwaters or porous barriers around fish cages or other offshore structures is beneficial
for mitigating wave action. Mandal et al. (2013) have proposed an analytical solution
for the wave response of a porous concentric circle structure and used similar modelling
techniques to those in the current thesis.

7.4 Research limitations and future work

At present, the Ph.D. thesis has developed an essential theoretical framework and tech-
niques underlying the development of hydroelastic models for fish cages. Some simulation
results are also discussed that may serve as reference for the design of future offshore
fish cage systems. Nevertheless, the limitations of these studies should also be consid-
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ered, including the modelling assumptions, studied objects, functionality et cetera. These
limitations indicate the scope of the existing studies and provide avenues for future work.

7.4.1 Research limitations

In the modelling process, several linear approximations are assumed. Firstly, the small
amplitude wave theory neglects the nonlinear term in the free water surface boundary
conditions, and only the zero-order terms in the Taylor expansions of the relevant physical
quantities are retained when the wave steepness is assumed to be a small quantity. Sim-
ilarly, the kinematic boundary conditions of the cage interface cannot be satisfied at the
interface’s instantaneous location due to the negligence of the higher-order terms in the
Taylor expansion when the displacement amplitude is small compared to the cross-section
dimension of the cage. Thirdly, Darcy’s law is adopted in the porous medium model,
which implies that the condition of the flow penetrating through the net surface is laminar.
In addition, the governing equations of the cage structure cannot handle the nonlinear
constitutive relation and large deformations of the material.

The applicable functions of the model still has limitations. Currently, the coupling
between the floating collar and net chamber is not considered, and the motions of mooring
cables have a significant impact on the whole cage systems, such as, stress concentration.
On the other hand, in realistic offshore environments, wave conditions are naturally
nonlinear and irregular, especially when the wave steepness is greater, the nonlinear effects
on the free water surface become more significant. For submersible fish cages, there
is a high likelihood of encountering current loads, and they are significantly influenced
as well. In the case of array configuration, the wake generated by upstream cages can
cause shielding effects, which can affect the oxygen concentration inside the downstream
cages (the oxygen content is extremely vital for the welfare of fish). Moreover, wave-
current interactions are also a common phenomenon in the marine environment, wherein
significant changes can manifest for the flow pattern and wave field.

7.4.2 Future work lines

Combining the literature review and research limitations, some feasible future research
directions can be identified.

The solution to some important nonlinear problems is one future research direction.
The small amplitude wave theory is only applicable to some specific wave conditions, so the
introduction of high-order Stokes waves is necessary. Malenica et al. (1999) have proposed
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an analytical solution to the diffraction of second-order waves around multiple cylinders,
which provides some ideas for model updating. In addition, in the aforementioned literature
review, the hydrodynamic force acting on the net is quadratically related to the flow velocity
for the flow conditions with a high Reynolds number, so the quadratic porous medium
model presented in Molin (2011) may have to replace Darcy’s law. Compared to linear
porous flow models, quadratic porous flow models assume that turbulent effects are much
greater than viscous effects (Chen, 2016), making them suitable for flow separation near
fishing cage nets caused by sharp openings or high Reynolds numbers conditions.

To improve the generalisability of the model, the hydroelastic model of a completed
fish cage system coupling floating collars, net chambers and mooring systems will be
developed. Such a model would be applicable to the cage with arbitrary cross-sectional
shapes. Gharechae et al. (2020) and Park and Wang (2022) have proposed relevant
solutions to the floating rings interacting with waves, which may be embedded in the
model developed in this thesis. Additionally, the impact of currents on fish cages is not
negligible, especially, the effect of flow patterns on the distribution of oxygen inside the
cage. At present, there are two ways to introduce current effects into existing models. The
first method is to directly modify the boundary conditions of the potential flow model
to couple the velocity potential induced by the currents with the velocity potential of
the waves. The second method can be borrowed from Zhao et al. (2007) and Xu et al.
(2013a,b) to equivalently transform the incident wave and incoming current into a modified
incident wave through wave-current interaction theory. Then, the distribution of oxygen
concentration around the fish farm can be simulated by a CFD model based on the obtained
flow pattern.
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